3 instantiations of RandomizedPcaTrainer
Microsoft.ML.PCA (3)
PCACatalog.cs (2)
77return new RandomizedPcaTrainer(env, featureColumnName, exampleWeightColumnName, rank, oversampling, ensureZeroMean, seed); 99return new RandomizedPcaTrainer(env, options);
PcaTrainer.cs (1)
405() => new RandomizedPcaTrainer(host, input),
33 references to RandomizedPcaTrainer
Microsoft.ML.Core.Tests (2)
UnitTests\TestEntryPoints.cs (2)
4323var pcaInput = new RandomizedPcaTrainer.Options 4327var model = RandomizedPcaTrainer.TrainPcaAnomaly(Env, pcaInput).PredictorModel;
Microsoft.ML.IntegrationTests (1)
Evaluation.cs (1)
38var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca();
Microsoft.ML.PCA (16)
PCACatalog.cs (5)
9using static Microsoft.ML.Trainers.RandomizedPcaTrainer; 47/// Create <see cref="RandomizedPcaTrainer"/>, which trains an approximate principal component analysis (PCA) model using randomized singular value decomposition (SVD) algorithm. 67public static RandomizedPcaTrainer RandomizedPca(this AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, 81/// Create <see cref="RandomizedPcaTrainer"/> with advanced options, which trains an approximate principal component analysis (PCA) model using randomized singular value decomposition (SVD) algorithm. 95public static RandomizedPcaTrainer RandomizedPca(this AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, Options options)
PcaTrainer.cs (11)
20[assembly: LoadableClass(RandomizedPcaTrainer.Summary, typeof(RandomizedPcaTrainer), typeof(RandomizedPcaTrainer.Options), 22RandomizedPcaTrainer.UserNameValue, 23RandomizedPcaTrainer.LoadNameValue, 24RandomizedPcaTrainer.ShortName)] 29[assembly: LoadableClass(typeof(void), typeof(RandomizedPcaTrainer), null, typeof(SignatureEntryPointModule), RandomizedPcaTrainer.LoadNameValue)] 91/// Options for the <see cref="RandomizedPcaTrainer"/> as used in 134/// Initializes a new instance of <see cref="RandomizedPcaTrainer"/>. 412/// Model parameters for <see cref="RandomizedPcaTrainer"/>.
Microsoft.ML.Samples (3)
Dynamic\Trainers\AnomalyDetection\RandomizedPcaSample.cs (1)
36var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
Dynamic\Trainers\AnomalyDetection\RandomizedPcaSampleWithOptions.cs (2)
36var options = new Microsoft.ML.Trainers.RandomizedPcaTrainer.Options() 45var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
Microsoft.ML.Tests (11)
AnomalyDetectionTests.cs (10)
62var trainer1 = mlContext.AnomalyDetection.Trainers.RandomizedPca(featureColumnName: nameof(DataPoint.Features), rank: 1, ensureZeroMean: false); 68var options = new Trainers.RandomizedPcaTrainer.Options() 77var trainer2 = mlContext.AnomalyDetection.Trainers.RandomizedPca(options); 92var trainer1 = mlContext.AnomalyDetection.Trainers.RandomizedPca(featureColumnName: nameof(DataPoint.Features), rank: 1, ensureZeroMean: false); 98var options = new Trainers.RandomizedPcaTrainer.Options() 107var trainer2 = mlContext.AnomalyDetection.Trainers.RandomizedPca(options); 136private static void ExecutePipelineWithGivenRandomizedPcaTrainer(MLContext mlContext, Trainers.RandomizedPcaTrainer trainer) 180private static void ExecuteRandomizedPcaTrainerChangeThreshold(MLContext mlContext, Trainers.RandomizedPcaTrainer trainer) 249var trainer = ML.AnomalyDetection.Trainers.RandomizedPca(); 264var trainer = mlContext.AnomalyDetection.Trainers.RandomizedPca(
TrainerEstimators\TrainerEstimators.cs (1)
44var pipeline = new RandomizedPcaTrainer(Env, featureColumn, rank: 10, seed: 1);