|
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.AnomalyDetection
{
public static class RandomizedPcaSample
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for except
// ion tracking and logging, as a catalog of available operations and as
// the source of randomness. Setting the seed to a fixed number in this
// example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Training data.
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[3] {0, 2, 1} },
new DataPoint(){ Features = new float[3] {0, 2, 1} },
new DataPoint(){ Features = new float[3] {0, 2, 1} },
new DataPoint(){ Features = new float[3] {0, 1, 2} },
new DataPoint(){ Features = new float[3] {0, 2, 1} },
new DataPoint(){ Features = new float[3] {2, 0, 0} }
};
// Convert the List<DataPoint> to IDataView, a consumable format to
// ML.NET functions.
var data = mlContext.Data.LoadFromEnumerable(samples);
// Create an anomaly detector. Its underlying algorithm is randomized
// PCA.
var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
featureColumnName: nameof(DataPoint.Features), rank: 1,
ensureZeroMean: false);
// Train the anomaly detector.
var model = pipeline.Fit(data);
// Apply the trained model on the training data.
var transformed = model.Transform(data);
// Read ML.NET predictions into IEnumerable<Result>.
var results = mlContext.Data.CreateEnumerable<Result>(transformed,
reuseRowObject: false).ToList();
// Let's go through all predictions.
for (int i = 0; i < samples.Count; ++i)
{
// The i-th example's prediction result.
var result = results[i];
// The i-th example's feature vector in text format.
var featuresInText = string.Join(',', samples[i].Features);
if (result.PredictedLabel)
// The i-th sample is predicted as an outlier.
Console.WriteLine("The {0}-th example with features [{1}] is " +
"an outlier with a score of being inlier {2}", i,
featuresInText, result.Score);
else
// The i-th sample is predicted as an inlier.
Console.WriteLine("The {0}-th example with features [{1}] is " +
"an inlier with a score of being inlier {2}", i,
featuresInText, result.Score);
}
// Lines printed out should be
// The 0 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
// The 1 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
// The 2 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
// The 3 - th example with features[0, 1, 2] is an outlier with a score of being outlier 0.5082728
// The 4 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
// The 5 - th example with features[2, 0, 0] is an outlier with a score of being outlier 1
}
// Example with 3 feature values. A training data set is a collection of
// such examples.
private class DataPoint
{
[VectorType(3)]
public float[] Features { get; set; }
}
// Class used to capture prediction of DataPoint.
private class Result
{
// Outlier gets true while inlier has false.
public bool PredictedLabel { get; set; }
// Inlier gets smaller score. Score is between 0 and 1.
public float Score { get; set; }
}
}
}
|