3 instantiations of KMeansTrainer
Microsoft.ML.KMeansClustering (3)
KMeansCatalog.cs (2)
44
return new
KMeansTrainer
(env, options);
64
return new
KMeansTrainer
(env, options);
KMeansPlusPlusTrainer.cs (1)
299
() => new
KMeansTrainer
(host, input),
33 references to KMeansTrainer
Microsoft.ML.IntegrationTests (4)
Evaluation.cs (1)
125
.Append(mlContext.Clustering.Trainers.KMeans(new
KMeansTrainer
.Options { NumberOfThreads = 1 }));
IntrospectiveTraining.cs (2)
421
new
KMeansTrainer
.Options
423
InitializationAlgorithm =
KMeansTrainer
.InitializationAlgorithm.Random,
ONNX.cs (1)
94
new
KMeansTrainer
.Options { NumberOfThreads = 1, MaximumNumberOfIterations = 10 }));
Microsoft.ML.KMeansClustering (20)
KMeansCatalog.cs (7)
18
/// Train a KMeans++ clustering algorithm using <see cref="
KMeansTrainer
"/>.
30
public static
KMeansTrainer
KMeans(this ClusteringCatalog.ClusteringTrainers catalog,
33
int numberOfClusters =
KMeansTrainer
.Defaults.NumberOfClusters)
38
var options = new
KMeansTrainer
.Options
48
/// Train a KMeans++ clustering algorithm using <see cref="
KMeansTrainer
"/>.
58
public static
KMeansTrainer
KMeans(this ClusteringCatalog.ClusteringTrainers catalog,
KMeansTrainer
.Options options)
KMeansPlusPlusTrainer.cs (13)
19
[assembly: LoadableClass(
KMeansTrainer
.Summary, typeof(
KMeansTrainer
), typeof(
KMeansTrainer
.Options),
21
KMeansTrainer
.UserNameValue,
22
KMeansTrainer
.LoadNameValue,
23
KMeansTrainer
.ShortName, "KMeans")]
25
[assembly: LoadableClass(typeof(void), typeof(
KMeansTrainer
), null, typeof(SignatureEntryPointModule), "KMeans")]
78
/// <seealso cref="Microsoft.ML.Trainers.
KMeansTrainer
" />
103
/// Options for the <see cref="
KMeansTrainer
"/> as used in [KMeansTrainer(Options)](xref:Microsoft.ML.KMeansClusteringExtensions.KMeans(Microsoft.ML.ClusteringCatalog.ClusteringTrainers,Microsoft.ML.Trainers.KMeansTrainer.Options)).
166
/// Initializes a new instance of <see cref="
KMeansTrainer
"/>
793
ch.CheckUserArg(numThreads > 0, nameof(
KMeansTrainer
.Options.NumberOfThreads), "Must be positive");
794
ch.CheckUserArg(k > 0, nameof(
KMeansTrainer
.Options.NumberOfClusters), "Must be positive");
796
ch.CheckUserArg(accelMemBudgetMb >= 0, nameof(
KMeansTrainer
.Options.AccelerationMemoryBudgetMb), "Must be non-negative");
Microsoft.ML.Samples (3)
Dynamic\Trainers\Clustering\KMeans.cs (1)
27
var
pipeline = mlContext.Clustering.Trainers.KMeans(
Dynamic\Trainers\Clustering\KMeansWithOptions.cs (2)
28
var options = new
KMeansTrainer
.Options
36
var
pipeline = mlContext.Clustering.Trainers.KMeans(options);
Microsoft.ML.Tests (6)
OnnxConversionTest.cs (2)
154
Append(mlContext.Clustering.Trainers.KMeans(new Trainers.
KMeansTrainer
.Options
160
InitializationAlgorithm = Trainers.
KMeansTrainer
.InitializationAlgorithm.Random
Scenarios\ClusteringTests.cs (1)
66
var
pipe = mlContext.Clustering.Trainers.KMeans("Features", numberOfClusters: k);
TrainerEstimators\TrainerEstimators.cs (3)
74
var
pipeline = new KMeansTrainer(Env, new
KMeansTrainer
.Options
78
InitializationAlgorithm =
KMeansTrainer
.InitializationAlgorithm.KMeansYinyang,