1 write to Dataset
Microsoft.ML.FastTree (1)
Training\Applications\ObjectiveFunction.cs (1)
44
Dataset
= dataset;
45 references to Dataset
Microsoft.ML.FastTree (45)
FastTreeClassification.cs (4)
365
int begin =
Dataset
.Boundaries[query];
366
int numDocuments =
Dataset
.Boundaries[query + 1] -
Dataset
.Boundaries[query];
405
means = _parallelTraining.GlobalMean(
Dataset
, tree, partitioning, Weights, false);
FastTreeRanking.cs (26)
578
TrainQueriesTopLabels = new short[
Dataset
.NumQueries][];
579
for (int q = 0; q <
Dataset
.NumQueries; ++q)
582
_labelCounts = new int[
Dataset
.NumQueries][];
584
for (int q = 0; q <
Dataset
.NumQueries; ++q)
592
_inverseMaxDcgt = new double[
Dataset
.NumQueries];
593
for (int q = 0; q <
Dataset
.NumQueries; ++q)
598
_inverseMaxDcgt = DcgCalculator.MaxDcg(_labels,
Dataset
.Boundaries, _maxDcgTruncationLevel, _labelCounts);
599
for (int q = 0; q <
Dataset
.NumQueries; ++q)
603
_discount = new double[
Dataset
.MaxDocsPerQuery];
606
_oneTwoThree = new int[
Dataset
.MaxDocsPerQuery];
607
for (int d = 0; d <
Dataset
.MaxDocsPerQuery; ++d)
618
_permutationBuffers[i] = new int[
Dataset
.MaxDocsPerQuery];
633
_scoresCopy = new double[
Dataset
.NumDocs];
634
_labelsCopy = new short[
Dataset
.NumDocs];
635
_groupIdToTopLabel = new short[
Dataset
.NumDocs];
746
int begin =
Dataset
.Boundaries[query];
747
int numDocuments =
Dataset
.Boundaries[query + 1] -
Dataset
.Boundaries[query];
808
IgnoreNonBestDuplicates(labels, scoresToUse, permutation,
Dataset
.DupeIds, begin, numDocuments);
934
means = _parallelTraining.GlobalMean(
Dataset
, tree, partitioning, Weights, _filterZeroLambdas);
954
for (int d = 0; d <
Dataset
.MaxDocsPerQuery; ++d)
961
_gainLabels = new double[
Dataset
.NumDocs];
962
for (int i = 0; i <
Dataset
.NumDocs; i++)
971
int numDocuments =
Dataset
.Boundaries[query + 1] -
Dataset
.Boundaries[query];
972
int begin =
Dataset
.Boundaries[query];
FastTreeRegression.cs (2)
459
int begin =
Dataset
.Boundaries[query];
460
int end =
Dataset
.Boundaries[query + 1];
FastTreeTweedie.cs (2)
453
int begin =
Dataset
.Boundaries[query];
454
int end =
Dataset
.Boundaries[query + 1];
RandomForestClassification.cs (2)
396
int begin =
Dataset
.Boundaries[query];
397
int end =
Dataset
.Boundaries[query + 1];
RandomForestRegression.cs (2)
532
int begin =
Dataset
.Boundaries[query];
533
int end =
Dataset
.Boundaries[query + 1];
Training\Applications\GradientWrappers.cs (2)
51
double[] sampleWeights = objFunction.
Dataset
.SampleWeights;
72
double[] sampleWeights = objFunction.
Dataset
.SampleWeights;
Training\Applications\ObjectiveFunction.cs (5)
51
Gradient = new double[
Dataset
.NumDocs];
52
Weights = new double[
Dataset
.NumDocs];
63
var actions = new Action[(int)Math.Ceiling((double)
Dataset
.NumQueries / QueryThreadChunkSize)];
67
for (int q = 0; q <
Dataset
.NumQueries; q += QueryThreadChunkSize)
74
GetGradientChunk(start, start + Math.Min(QueryThreadChunkSize,
Dataset
.NumQueries - start), GradSamplingRate, sampleIndex, threadIndex);