39 references to Dataset
Microsoft.ML.FastTree (39)
Training\Test.cs (39)
350DcgCalculator = new DcgCalculator(Dataset.MaxDocsPerQuery, _sortingAlgorithm); 356double[] ndcg = DcgCalculator.NdcgRangeFromScores(Dataset, Labels, scores); 359result.Add(new TestResult("NDCG@" + (i + 1).ToString(), ndcg[i] * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average)); 399fastNdcg = DcgCalculator.Ndcg1(Dataset, Labels, scores); 402fastNdcg = DcgCalculator.Ndcg3(Dataset, Labels, scores); 411new TestResult("NDCG@" + NdcgTruncation.ToString(), fastNdcg * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 444fastNdcg = DcgCalculator.Ndcg1(Dataset, trainQueriesTopLabels); 447fastNdcg = DcgCalculator.Ndcg3(Dataset, trainQueriesTopLabels); 454new TestResult("NDCG@" + NdcgTruncation.ToString(), fastNdcg * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 476() => new WinLossCalculator(Dataset.MaxDocsPerQuery, _sortingAlgorithm)); 481double[] surplus = _winLossCalculator.Value.WinLossRangeFromScores(Dataset, _labels, scores); 486new TestResult("Surplus@100", surplus[0] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 487new TestResult("Surplus@200", surplus[1] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 488new TestResult("Surplus@300", surplus[2] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 489new TestResult("Surplus@400", surplus[3] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 490new TestResult("Surplus@500", surplus[4] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 491new TestResult("Surplus@1000", surplus[5] * _scaleFactor * Dataset.NumQueries, Dataset.NumQueries, false, TestResult.ValueOperator.Average), 535double[] weights = Dataset.SampleWeights; 538int chunkSize = 1 + Dataset.NumDocs / BlockingThreadPool.NumThreads; // Minimizes the number of repeat computations in sparse array to have each thread take as big a chunk as possible 541var actions = new Action[(int)Math.Ceiling(1.0 * Dataset.NumDocs / chunkSize)]; 543for (int documentStart = 0; documentStart < Dataset.NumDocs; documentStart += chunkSize) 546var endDoc = Math.Min(documentStart + chunkSize - 1, Dataset.NumDocs - 1); 574result.Add(new TestResult("L1", totalL1Error, Dataset.NumDocs, true, TestResult.ValueOperator.Average)); 577result.Add(new TestResult("L2", totalL2Error, Dataset.NumDocs, true, TestResult.ValueOperator.SqrtAverage)); 580result.Add(new TestResult("L1", totalL1Error, Dataset.NumDocs, true, TestResult.ValueOperator.Average)); 581result.Add(new TestResult("L2", totalL2Error, Dataset.NumDocs, true, TestResult.ValueOperator.SqrtAverage)); 656int chunkSize = 1 + Dataset.NumDocs / BlockingThreadPool.NumThreads; // Minimizes the number of repeat computations in sparse array to have each thread take as big a chunk as possible 659var actions = new Action[(int)Math.Ceiling(1.0 * Dataset.NumDocs / chunkSize)]; 661for (int documentStart = 0; documentStart < Dataset.NumDocs; documentStart += chunkSize) 664var endDoc = Math.Min(documentStart + chunkSize - 1, Dataset.NumDocs - 1);