1 implementation of IParallelTraining
Microsoft.ML.FastTree (1)
Training\Parallel\SingleTrainer.cs (1)
22
internal sealed class SingleTrainer :
IParallelTraining
32 references to IParallelTraining
Microsoft.ML.FastTree (32)
FastTree.cs (7)
62
private protected
IParallelTraining
ParallelTraining;
957
IParallelTraining
parallelTraining, int[] categoricalFeatureIndices, bool categoricalSplit)
1267
IParallelTraining
parallelTraining, int[] categoricalFeatureIndices, bool categoricalSplit)
1325
private Dataset Construct(RoleMappedData examples, ref int numExamples, int maxBins,
IParallelTraining
parallelTraining)
1782
PredictionKind kind,
IParallelTraining
parallelTraining, int[] categoricalFeatureIndices, bool categoricalSplit)
1902
private void InitializeBins(int maxBins,
IParallelTraining
parallelTraining)
2744
public Dataset FindBinsAndReturnDataset(RoleMappedData data, PredictionKind kind,
IParallelTraining
parallelTraining,
FastTreeClassification.cs (2)
328
private readonly
IParallelTraining
_parallelTraining;
342
IParallelTraining
parallelTraining)
FastTreeRanking.cs (2)
561
private readonly
IParallelTraining
_parallelTraining;
567
public LambdaRankObjectiveFunction(Dataset trainset, short[] labels, Options options,
IParallelTraining
parallelTraining)
GamTrainer.cs (1)
166
private protected
IParallelTraining
ParallelTraining;
Training\Parallel\IParallelTraining.cs (1)
152
internal interface ISupportParallelTraining : IComponentFactory<
IParallelTraining
>
Training\Parallel\SingleTrainer.cs (16)
24
void
IParallelTraining
.CacheHistogram(bool isSmallerLeaf, int featureIdx, int subfeature, SufficientStatsBase sufficientStatsBase, bool hasWeights)
28
bool
IParallelTraining
.IsNeedFindLocalBestSplit()
33
void
IParallelTraining
.FindGlobalBestSplit(LeafSplitCandidates smallerChildSplitCandidates,
40
void
IParallelTraining
.GetGlobalDataCountInLeaf(int leafIdx, ref int cnt)
44
bool[]
IParallelTraining
.GetLocalBinConstructionFeatures(int numFeatures)
49
double[]
IParallelTraining
.GlobalMean(Dataset dataset, InternalRegressionTree tree, DocumentPartitioning partitioning, double[] weights, bool filterZeroLambdas)
59
void
IParallelTraining
.PerformGlobalSplit(int leaf, int lteChild, int gtChild, SplitInfo splitInfo)
63
void
IParallelTraining
.InitIteration(ref bool[] activeFeatures)
67
void
IParallelTraining
.InitEnvironment()
71
void
IParallelTraining
.InitTreeLearner(Dataset trainData, int maxNumLeaves, int maxCatSplitPoints, ref int minDocInLeaf)
75
void
IParallelTraining
.SyncGlobalBoundary(int numFeatures, int maxBin, Double[][] binUpperBounds)
79
void
IParallelTraining
.FinalizeEnvironment()
83
void
IParallelTraining
.FinalizeTreeLearner()
87
void
IParallelTraining
.FinalizeIteration()
91
bool
IParallelTraining
.IsSkipNonSplittableHistogram()
100
public
IParallelTraining
CreateComponent(IHostEnvironment env) => new SingleTrainer();
Training\TreeLearners\FastForestLeastSquaresTreeLearner.cs (1)
17
Double gainConfidenceLevel, int maxCategoricalGroupsPerNode, int maxCategoricalSplitPointsPerNode, bool quantileEnabled, int quantileSampleCount,
IParallelTraining
parallelTraining,
Training\TreeLearners\LeastSquaresRegressionTreeLearner.cs (2)
77
private readonly
IParallelTraining
_parallelTraining;
124
double bsrMaxTreeOutput,
IParallelTraining
parallelTraining, double minDocsPercentageForCategoricalSplit,