1 write to Mean
Microsoft.ML.Data (1)
Transforms\Normalizer.cs (1)
928
Mean
= mean;
18 references to Mean
Microsoft.ML.Data (1)
Transforms\Normalizer.cs (1)
894
/// The cumulative density function is parameterized by <see cref="CdfNormalizerModelParameters{TData}.
Mean
"/> and
Microsoft.ML.Samples (3)
Dynamic\Transforms\NormalizeLogMeanVariance.cs (1)
78
.
Mean
[1] + ") / (" + transformParams.StandardDeviation[1] +
Dynamic\Transforms\NormalizeLogMeanVarianceFixZero.cs (1)
62
Console.WriteLine($"y = 0.5* (1 + ERF((Math.Log(x)- {transformParams.
Mean
[1]}) / ({transformParams.StandardDeviation[1]} * sqrt(2)))");
Dynamic\Transforms\NormalizeMeanVariance.cs (1)
78
Console.WriteLine(" y = 0.5* (1 + ERF((x- " + transformParams.
Mean
[1] +
Microsoft.ML.Tests (14)
Transformers\NormalizerTests.cs (14)
196
Assert.Equal(1.75623953f, floatCdfLogMeanData.
Mean
);
201
Assert.Equal(4, floatCdfLogMeanDataVec.
Mean
.Length);
206
Assert.Equal(1.7562395401953814, doubleCdfLogMeanData.
Mean
);
211
Assert.Equal(4, doubleCdfLogMeanDataVec.
Mean
.Length);
330
Assert.Equal(-0.310623198747635f, floatCdfLogMeanModel.
Mean
);
335
Assert.Equal(4, floatCdfLogMeanModelVector.
Mean
.Length);
336
Assert.True(-0.3106232f == floatCdfLogMeanModelVector.
Mean
[0]);
337
Assert.True(-1.08362031f == floatCdfLogMeanModelVector.
Mean
[3]);
344
Assert.Equal(-0.31062321927759518, doubleCdfLogMeanModel.
Mean
);
349
Assert.Equal(4, doubleCdfLogMeanModelVector.
Mean
.Length);
350
Assert.True(-0.31062321927759518 == doubleCdfLogMeanModelVector.
Mean
[0]);
351
Assert.True(-1.0836203140680853 == doubleCdfLogMeanModelVector.
Mean
[3]);
923
Assert.NotEqual(0f, transformParams.
Mean
);
966
Assert.NotEqual(0f, transformParams.
Mean
[i]);