2 writes to Weight
Microsoft.ML.Data (2)
Training\TrainerUtils.cs (2)
758
Weight
= 1;
778
_getWeight(ref
Weight
);
25 references to Weight
Microsoft.ML.Data (2)
Training\TrainerUtils.cs (2)
779
if (!_keepBadWeight && !(0 <
Weight
&&
Weight
< float.PositiveInfinity))
Microsoft.ML.FastTree (1)
FastTree.cs (1)
1879
_weights.Add(cursor.
Weight
);
Microsoft.ML.KMeansClustering (1)
KMeansPlusPlusTrainer.cs (1)
409
probabilityWeight *= cursor.
Weight
;
Microsoft.ML.LightGbm (2)
LightGbmTrainerBase.cs (2)
791
if (float.IsNaN(cursor.
Weight
))
794
weightList.Add(cursor.
Weight
);
Microsoft.ML.PCA (3)
PcaTrainer.cs (3)
318
VectorUtils.AddMult(in cursor.Features, cursor.
Weight
, ref mean);
324
cursor.
Weight
* VectorUtils.DotProduct(omega[i], in cursor.Features));
326
n += cursor.
Weight
;
Microsoft.ML.StandardTrainers (16)
Standard\LogisticRegression\LbfgsPredictorBase.cs (8)
392
AccumulateOneGradient(in cursor.Features, cursor.Label, cursor.
Weight
, in x, ref grad, ref scratch);
502
WeightSum += cursor.
Weight
;
503
weightsList.Add(cursor.
Weight
);
612
WeightSum += cursor.
Weight
;
614
ProcessPriorDistribution(cursor.Label, cursor.
Weight
);
616
PreTrainingProcessInstance(cursor.Label, in cursor.Features, cursor.
Weight
);
627
_weights[index] = cursor.
Weight
;
876
loss += AccumulateOneGradient(in cursor.Features, cursor.Label, cursor.
Weight
,
Standard\LogisticRegression\LogisticRegression.cs (1)
348
var weight = cursor.
Weight
;
Standard\Online\OnlineLinear.cs (1)
336
state.ProcessDataInstance(ch, in cursor.Features, cursor.Label, cursor.
Weight
);
Standard\SdcaBinary.cs (4)
1541
return cursor.Label > 0 ? cursor.
Weight
* _positiveInstanceWeight : cursor.
Weight
;
2083
var instanceWeight = cursor.
Weight
;
2125
float derivative = cursor.
Weight
* lossFunc.Derivative(WScaledDot(in features, weightScaling, in weights, bias), label); // complexity: O(k)
Standard\SdcaMulticlass.cs (1)
480
return cursor.
Weight
;
Standard\SdcaRegression.cs (1)
160
return cursor.
Weight
;