2 writes to Weight
Microsoft.ML.Data (2)
Training\TrainerUtils.cs (2)
758Weight = 1; 778_getWeight(ref Weight);
25 references to Weight
Microsoft.ML.Data (2)
Training\TrainerUtils.cs (2)
779if (!_keepBadWeight && !(0 < Weight && Weight < float.PositiveInfinity))
Microsoft.ML.FastTree (1)
FastTree.cs (1)
1879_weights.Add(cursor.Weight);
Microsoft.ML.KMeansClustering (1)
KMeansPlusPlusTrainer.cs (1)
409probabilityWeight *= cursor.Weight;
Microsoft.ML.LightGbm (2)
LightGbmTrainerBase.cs (2)
791if (float.IsNaN(cursor.Weight)) 794weightList.Add(cursor.Weight);
Microsoft.ML.PCA (3)
PcaTrainer.cs (3)
318VectorUtils.AddMult(in cursor.Features, cursor.Weight, ref mean); 324cursor.Weight * VectorUtils.DotProduct(omega[i], in cursor.Features)); 326n += cursor.Weight;
Microsoft.ML.StandardTrainers (16)
Standard\LogisticRegression\LbfgsPredictorBase.cs (8)
392AccumulateOneGradient(in cursor.Features, cursor.Label, cursor.Weight, in x, ref grad, ref scratch); 502WeightSum += cursor.Weight; 503weightsList.Add(cursor.Weight); 612WeightSum += cursor.Weight; 614ProcessPriorDistribution(cursor.Label, cursor.Weight); 616PreTrainingProcessInstance(cursor.Label, in cursor.Features, cursor.Weight); 627_weights[index] = cursor.Weight; 876loss += AccumulateOneGradient(in cursor.Features, cursor.Label, cursor.Weight,
Standard\LogisticRegression\LogisticRegression.cs (1)
348var weight = cursor.Weight;
Standard\Online\OnlineLinear.cs (1)
336state.ProcessDataInstance(ch, in cursor.Features, cursor.Label, cursor.Weight);
Standard\SdcaBinary.cs (4)
1541return cursor.Label > 0 ? cursor.Weight * _positiveInstanceWeight : cursor.Weight; 2083var instanceWeight = cursor.Weight; 2125float derivative = cursor.Weight * lossFunc.Derivative(WScaledDot(in features, weightScaling, in weights, bias), label); // complexity: O(k)
Standard\SdcaMulticlass.cs (1)
480return cursor.Weight;
Standard\SdcaRegression.cs (1)
160return cursor.Weight;