91 instantiations of PipelineNode
Microsoft.ML.AutoML (17)
EstimatorExtensions\EstimatorExtensions.cs (14)
18
var pipelineNode = new
PipelineNode
(EstimatorName.ColumnConcatenating.ToString(),
39
var pipelineNode = new
PipelineNode
(EstimatorName.ColumnCopying.ToString(),
60
var pipelineNode = new
PipelineNode
(EstimatorName.KeyToValueMapping.ToString(),
81
var pipelineNode = new
PipelineNode
(EstimatorName.Hashing.ToString(),
102
var pipelineNode = new
PipelineNode
(EstimatorName.MissingValueIndicating.ToString(),
129
var pipelineNode = new
PipelineNode
(EstimatorName.MissingValueReplacing.ToString(),
156
var pipelineNode = new
PipelineNode
(EstimatorName.Normalizing.ToString(),
177
var pipelineNode = new
PipelineNode
(EstimatorName.OneHotEncoding.ToString(),
208
var pipelineNode = new
PipelineNode
(EstimatorName.OneHotHashEncoding.ToString(),
234
var pipelineNode = new
PipelineNode
(EstimatorName.TextFeaturizing.ToString(),
255
var pipelineNode = new
PipelineNode
(EstimatorName.TypeConverting.ToString(),
281
var pipelineNode = new
PipelineNode
(EstimatorName.ValueToKeyMapping.ToString(),
308
var pipelineNode = new
PipelineNode
(EstimatorName.RawByteImageLoading.ToString(), PipelineNodeType.Transform, inColumn, outColumn, pipelineNodeProperty);
333
var pipelineNode = new
PipelineNode
(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, inColumn, outColumn, pipelineNodeProperty);
TrainerExtensions\TrainerExtensionUtil.cs (3)
103
var ovaNode = new
PipelineNode
()
130
return new
PipelineNode
(trainerName.ToString(), PipelineNodeType.Trainer, DefaultColumnNames.Features,
137
return new
PipelineNode
(trainerName.ToString(), PipelineNodeType.Trainer, DefaultColumnNames.Features,
Microsoft.ML.AutoML.Tests (1)
EstimatorExtensionTests.cs (1)
25
var pipelineNode = new
PipelineNode
()
Microsoft.ML.CodeGenerator.Tests (73)
ApprovalTests\ConsoleCodeGeneratorTests.cs (15)
558
var valueToKeyPipelineNode1 = new
PipelineNode
(nameof(EstimatorName.ValueToKeyMapping), PipelineNodeType.Transform, "userId", "userId");
559
var valueToKeyPipelineNode2 = new
PipelineNode
(nameof(EstimatorName.ValueToKeyMapping), PipelineNodeType.Transform, "movieId", "movieId");
560
var matrixPipelineNode = new
PipelineNode
(nameof(TrainerName.MatrixFactorization), PipelineNodeType.Trainer, "Features", "Score", hyperParam);
672
var onnxPipeLineNode = new
PipelineNode
(
678
var loadImageNode = new
PipelineNode
(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, "ImagePath", "input");
679
var resizeImageNode = new
PipelineNode
(
689
var extractPixelsNode = new
PipelineNode
(nameof(SpecialTransformer.ExtractPixel), PipelineNodeType.Transform, "input", "input");
728
var hashPipelineNode = new
PipelineNode
(nameof(EstimatorName.Hashing), PipelineNodeType.Transform, "GroupId", "GroupId");
729
var lightGbmPipelineNode = new
PipelineNode
(nameof(TrainerName.LightGbmRanking), PipelineNodeType.Trainer, "Features", "Score", hyperParam);
765
var onnxPipeLineNode = new
PipelineNode
(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, string.Empty, string.Empty);
766
var loadImageNode = new
PipelineNode
(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, "ImageSource", "ImageSource_featurized");
767
var resizeImageNode = new
PipelineNode
(
777
var extractPixelsNode = new
PipelineNode
(nameof(SpecialTransformer.ExtractPixel), PipelineNodeType.Transform, "ImageSource_featurized", "input1");
811
var onnxPipeLineNode = new
PipelineNode
(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, string.Empty, string.Empty);
981
var onnxPipeLineNode = new
PipelineNode
(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, new[] { "input.1" }, new[] { "output.1" },
CodeGenTests.cs (5)
33
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
54
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
69
PipelineNode node = new
PipelineNode
("Normalizing", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
83
PipelineNode node = new
PipelineNode
("OneHotEncoding", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
127
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, new string[] { "Label" }, default(string), elementProperties);
TrainerGeneratorTests.cs (40)
35
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
63
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
85
PipelineNode node = new
PipelineNode
("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
103
PipelineNode node = new
PipelineNode
("SymbolicSgdLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
123
PipelineNode node = new
PipelineNode
("SymbolicSgdLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
140
PipelineNode node = new
PipelineNode
("SgdCalibratedBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
160
PipelineNode node = new
PipelineNode
("SgdCalibratedBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
177
PipelineNode node = new
PipelineNode
("SdcaLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
197
PipelineNode node = new
PipelineNode
("SdcaLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
214
PipelineNode node = new
PipelineNode
("SdcaMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
234
PipelineNode node = new
PipelineNode
("SdcaMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
251
PipelineNode node = new
PipelineNode
("SdcaRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
271
PipelineNode node = new
PipelineNode
("SdcaRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
287
PipelineNode node = new
PipelineNode
("MatrixFactorization", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
313
PipelineNode node = new
PipelineNode
("MatrixFactorization", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
328
PipelineNode node = new
PipelineNode
("LbfgsPoissonRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
348
PipelineNode node = new
PipelineNode
("LbfgsPoissonRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
365
PipelineNode node = new
PipelineNode
("OlsRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
385
PipelineNode node = new
PipelineNode
("OlsRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
402
PipelineNode node = new
PipelineNode
("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
422
PipelineNode node = new
PipelineNode
("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
439
PipelineNode node = new
PipelineNode
("LbfgsLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
459
PipelineNode node = new
PipelineNode
("LbfgsLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
476
PipelineNode node = new
PipelineNode
("LbfgsMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
496
PipelineNode node = new
PipelineNode
("LbfgsMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
513
PipelineNode node = new
PipelineNode
("LinearSvmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
533
PipelineNode node = new
PipelineNode
("LinearSvmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
551
PipelineNode node = new
PipelineNode
("FastTreeTweedieRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
571
PipelineNode node = new
PipelineNode
("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
589
PipelineNode node = new
PipelineNode
("FastTreeRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
609
PipelineNode node = new
PipelineNode
("FastTreeRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
627
PipelineNode node = new
PipelineNode
("FastTreeBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
647
PipelineNode node = new
PipelineNode
("FastTreeBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
665
PipelineNode node = new
PipelineNode
("FastForestRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
684
PipelineNode node = new
PipelineNode
("FastForestRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
702
PipelineNode node = new
PipelineNode
("FastForestBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
722
PipelineNode node = new
PipelineNode
("FastForestBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
740
PipelineNode node = new
PipelineNode
("AveragedPerceptronBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
760
PipelineNode node = new
PipelineNode
("AveragedPerceptronBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
775
PipelineNode node = new
PipelineNode
("ImageClassification", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
TransformGeneratorTests.cs (13)
26
PipelineNode node = new
PipelineNode
("MissingValueReplacing", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties);
40
PipelineNode node = new
PipelineNode
("OneHotEncoding", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties);
54
PipelineNode node = new
PipelineNode
("Normalizing", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1_copy" }, elementProperties);
68
PipelineNode node = new
PipelineNode
("ColumnConcatenating", PipelineNodeType.Transform, new string[] { "numeric_column_1", "numeric_column_2" }, new string[] { "Features" }, elementProperties);
82
PipelineNode node = new
PipelineNode
("ColumnCopying", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_2" }, elementProperties);
96
PipelineNode node = new
PipelineNode
("KeyToValueMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
110
PipelineNode node = new
PipelineNode
("MissingValueIndicating", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1" }, elementProperties);
124
PipelineNode node = new
PipelineNode
("OneHotHashEncoding", PipelineNodeType.Transform, new string[] { "Categorical_column_1" }, new string[] { "Categorical_column_1" }, elementProperties);
138
PipelineNode node = new
PipelineNode
("TextFeaturizing", PipelineNodeType.Transform, new string[] { "Text_column_1" }, new string[] { "Text_column_1" }, elementProperties);
152
PipelineNode node = new
PipelineNode
("TypeConverting", PipelineNodeType.Transform, new string[] { "I4_column_1" }, new string[] { "R4_column_1" }, elementProperties);
166
PipelineNode node = new
PipelineNode
("ValueToKeyMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
178
PipelineNode node = new
PipelineNode
("ImageLoading", PipelineNodeType.Transform,
192
PipelineNode node = new
PipelineNode
("RawByteImageLoading", PipelineNodeType.Transform,
301 references to PipelineNode
Microsoft.ML.AutoML (73)
API\Pipeline.cs (2)
11
public
PipelineNode
[] Nodes { get; set; }
14
public Pipeline(
PipelineNode
[] nodes, bool cacheBeforeTrainer = false)
EstimatorExtensions\EstimatorExtensions.cs (28)
11
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
18
var
pipelineNode = new PipelineNode(EstimatorName.ColumnConcatenating.ToString(),
32
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
39
var
pipelineNode = new PipelineNode(EstimatorName.ColumnCopying.ToString(),
53
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
60
var
pipelineNode = new PipelineNode(EstimatorName.KeyToValueMapping.ToString(),
74
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
81
var
pipelineNode = new PipelineNode(EstimatorName.Hashing.ToString(),
95
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
102
var
pipelineNode = new PipelineNode(EstimatorName.MissingValueIndicating.ToString(),
122
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
129
var
pipelineNode = new PipelineNode(EstimatorName.MissingValueReplacing.ToString(),
149
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
156
var
pipelineNode = new PipelineNode(EstimatorName.Normalizing.ToString(),
170
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
177
var
pipelineNode = new PipelineNode(EstimatorName.OneHotEncoding.ToString(),
196
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
208
var
pipelineNode = new PipelineNode(EstimatorName.OneHotHashEncoding.ToString(),
227
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
234
var
pipelineNode = new PipelineNode(EstimatorName.TextFeaturizing.ToString(),
248
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
255
var
pipelineNode = new PipelineNode(EstimatorName.TypeConverting.ToString(),
274
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
281
var
pipelineNode = new PipelineNode(EstimatorName.ValueToKeyMapping.ToString(),
297
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
308
var
pipelineNode = new PipelineNode(EstimatorName.RawByteImageLoading.ToString(), PipelineNodeType.Transform, inColumn, outColumn, pipelineNodeProperty);
322
public IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode)
333
var
pipelineNode = new PipelineNode(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, inColumn, outColumn, pipelineNodeProperty);
EstimatorExtensions\IEstimatorExtension.cs (1)
9
IEstimator<ITransformer> CreateInstance(MLContext context,
PipelineNode
pipelineNode);
Experiment\SuggestedPipeline.cs (2)
62
var pipelineElements = new List<
PipelineNode
>();
82
foreach (
var
pipelineNode in pipeline.Nodes)
Experiment\SuggestedTrainer.cs (1)
64
public
PipelineNode
ToPipelineNode()
TrainerExtensions\BinaryTrainerExtensions.cs (9)
47
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
79
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
101
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
122
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
143
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
164
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
186
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
208
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
229
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
TrainerExtensions\ITrainerExtension.cs (1)
19
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo);
TrainerExtensions\MultiTrainerExtensions.cs (11)
32
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
54
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
74
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
97
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
117
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
140
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
162
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
184
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
206
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
227
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
245
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
TrainerExtensions\RankingTrainerExtensions.cs (2)
30
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
52
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
TrainerExtensions\RecommendationTrainerExtensions.cs (1)
25
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
TrainerExtensions\RegressionTrainerExtensions.cs (8)
30
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
52
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
74
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
95
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
116
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
138
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
160
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
181
public
PipelineNode
CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
TrainerExtensions\TrainerExtensionUtil.cs (5)
100
public static
PipelineNode
BuildOvaPipelineNode(ITrainerExtension multiExtension, ITrainerExtension binaryExtension,
103
var
ovaNode = new PipelineNode()
112
var
binaryNode = binaryExtension.CreatePipelineNode(sweepParams, columnInfo);
117
public static
PipelineNode
BuildPipelineNode(TrainerName trainerName, IEnumerable<SweepableParam> sweepParams,
134
public static
PipelineNode
BuildLightGbmPipelineNode(TrainerName trainerName, IEnumerable<SweepableParam> sweepParams,
TransformInference\TransformInference.cs (2)
16
public readonly
PipelineNode
PipelineNode;
18
public SuggestedTransform(
PipelineNode
pipelineNode, IEstimator<ITransformer> estimator)
Microsoft.ML.AutoML.Tests (11)
EstimatorExtensionTests.cs (1)
25
var
pipelineNode = new PipelineNode()
TrainerExtensionsTests.cs (10)
45
var
pipelineNode = extension.CreatePipelineNode(null, columnInfo);
59
var
pipelineNode = extension.CreatePipelineNode(null, columnInfo);
72
var
pipelineNode = new MatrixFactorizationExtension().CreatePipelineNode(sweepParams, new ColumnInformation());
108
var
pipelineNode = new LightGbmBinaryExtension().CreatePipelineNode(sweepParams, new ColumnInformation());
153
var
pipelineNode = new SdcaLogisticRegressionBinaryExtension().CreatePipelineNode(sweepParams, new ColumnInformation());
179
var
pipelineNode = new LightGbmBinaryExtension().CreatePipelineNode(
212
var
pipelineNode = new FastForestBinaryExtension().CreatePipelineNode(sweepParams, columnInfo);
236
var
pipelineNode = new AveragedPerceptronBinaryExtension().CreatePipelineNode(null, new ColumnInformation() { LabelColumnName = "L" });
257
var
pipelineNode = new FastForestOvaExtension().CreatePipelineNode(null, new ColumnInformation());
291
var
pipelineNode = new FastTreeRankingExtension().CreatePipelineNode(null, columnInfo);
Microsoft.ML.CodeGenerator (65)
CodeGenerator\CSharp\CodeGenerator.cs (7)
99
private void SetRequiredNugetPackages(IEnumerable<
PipelineNode
> trainerNodes, ref bool includeLightGbmPackage,
103
foreach (
var
node in trainerNodes)
105
PipelineNode
currentNode = node;
108
currentNode = (
PipelineNode
)currentNode.Properties["BinaryTrainer"];
238
internal IList<(string, string[])> GenerateTransformsAndUsings(IEnumerable<
PipelineNode
> nodes)
243
foreach (
var
node in nodes)
256
var
node = _pipeline.Nodes.Where(t => t.NodeType == PipelineNodeType.Trainer).First();
CodeGenerator\CSharp\PipelineExtension.cs (3)
56
internal static IList<(string, string[])> GenerateTransformsAndUsings(IEnumerable<
PipelineNode
> nodes)
61
foreach (
var
node in nodes)
76
var
node = pipeline.Nodes.Where(t => t.NodeType == PipelineNodeType.Trainer).First();
CodeGenerator\CSharp\TrainerGeneratorBase.cs (2)
34
protected TrainerGeneratorBase(
PipelineNode
node)
39
private void Initialize(
PipelineNode
node)
CodeGenerator\CSharp\TrainerGeneratorFactory.cs (1)
20
internal static ITrainerGenerator GetInstance(
PipelineNode
node)
CodeGenerator\CSharp\TrainerGenerators.cs (31)
40
public LightGbmBase(
PipelineNode
node) : base(node)
49
public LightGbmBinary(
PipelineNode
node) : base(node)
58
public LightGbmMulti(
PipelineNode
node) : base(node)
67
public LightGbmRegression(
PipelineNode
node) : base(node)
76
public LightGbmRanking(
PipelineNode
node) : base(node)
110
public AveragedPerceptron(
PipelineNode
node) : base(node)
140
public FastTreeBase(
PipelineNode
node) : base(node)
153
public FastForestClassification(
PipelineNode
node) : base(node)
166
public FastForestRegression(
PipelineNode
node) : base(node)
179
public FastTreeClassification(
PipelineNode
node) : base(node)
192
public FastTreeRegression(
PipelineNode
node) : base(node)
205
public FastTreeRanking(
PipelineNode
node) : base(node)
218
public FastTreeTweedie(
PipelineNode
node) : base(node)
250
public LinearSvm(
PipelineNode
node) : base(node)
281
public LbfgsLogisticRegressionBase(
PipelineNode
node) : base(node)
292
public LbfgsLogisticRegressionBinary(
PipelineNode
node) : base(node)
304
public LbfgsMaximumEntropyMulti(
PipelineNode
node) : base(node)
339
public OnlineGradientDescentRegression(
PipelineNode
node) : base(node)
369
public OlsRegression(
PipelineNode
node) : base(node)
404
public LbfgsPoissonRegression(
PipelineNode
node) : base(node)
433
public StochasticDualCoordinateAscentBase(
PipelineNode
node) : base(node)
445
public StochasticDualCoordinateAscentBinary(
PipelineNode
node) : base(node)
457
public StochasticDualCoordinateAscentMulti(
PipelineNode
node) : base(node)
469
public StochasticDualCoordinateAscentRegression(
PipelineNode
node) : base(node)
503
public SgdCalibratedBinary(
PipelineNode
node) : base(node)
533
public SymbolicSgdLogisticRegressionBinary(
PipelineNode
node) : base(node)
541
private readonly
PipelineNode
_node;
555
public OneVersusAll(
PipelineNode
node) : base(node)
566
var trainerGenerator = TrainerGeneratorFactory.GetInstance((
PipelineNode
)_node.Properties["BinaryTrainer"]);
591
public ImageClassificationTrainer(
PipelineNode
node) : base(node)
630
public MatrixFactorization(
PipelineNode
node) : base(node)
CodeGenerator\CSharp\TransformGeneratorBase.cs (2)
31
protected TransformGeneratorBase(
PipelineNode
node)
37
private void Initialize(
PipelineNode
node)
CodeGenerator\CSharp\TransformGeneratorFactory.cs (1)
28
internal static ITransformGenerator GetInstance(
PipelineNode
node)
CodeGenerator\CSharp\TransformGenerators.cs (18)
14
public Normalizer(
PipelineNode
node) : base(node)
37
public OneHotEncoding(
PipelineNode
node) : base(node)
72
public ColumnConcat(
PipelineNode
node) : base(node)
102
public ColumnCopying(
PipelineNode
node) : base(node)
125
public KeyToValueMapping(
PipelineNode
node) : base(node)
148
public Hashing(
PipelineNode
node) : base(node)
171
public MissingValueIndicator(
PipelineNode
node) : base(node)
207
public MissingValueReplacer(
PipelineNode
node) : base(node)
242
public OneHotHashEncoding(
PipelineNode
node) : base(node)
277
public TextFeaturizing(
PipelineNode
node) : base(node)
300
public TypeConverting(
PipelineNode
node) : base(node)
335
public ValueToKeyMapping(
PipelineNode
node) : base(node)
358
public ImageLoadingRawBytes(
PipelineNode
node) : base(node)
376
public ImageLoading(
PipelineNode
node) : base(node)
394
public ImageResizing(
PipelineNode
node) : base(node) { }
405
public ObjectDetectionImageResizing(
PipelineNode
node) : base(node) { }
416
public PixelExtract(
PipelineNode
node) : base(node) { }
429
public ApplyOnnxModel(
PipelineNode
node) : base(node) { }
Microsoft.ML.CodeGenerator.Tests (152)
ApprovalTests\ConsoleCodeGeneratorTests.cs (21)
558
var
valueToKeyPipelineNode1 = new PipelineNode(nameof(EstimatorName.ValueToKeyMapping), PipelineNodeType.Transform, "userId", "userId");
559
var
valueToKeyPipelineNode2 = new PipelineNode(nameof(EstimatorName.ValueToKeyMapping), PipelineNodeType.Transform, "movieId", "movieId");
560
var
matrixPipelineNode = new PipelineNode(nameof(TrainerName.MatrixFactorization), PipelineNodeType.Trainer, "Features", "Score", hyperParam);
561
var pipeline = new Pipeline(new
PipelineNode
[]
672
var
onnxPipeLineNode = new PipelineNode(
678
var
loadImageNode = new PipelineNode(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, "ImagePath", "input");
679
var
resizeImageNode = new PipelineNode(
689
var
extractPixelsNode = new PipelineNode(nameof(SpecialTransformer.ExtractPixel), PipelineNodeType.Transform, "input", "input");
690
var bestPipeLine = new Pipeline(new
PipelineNode
[]
728
var
hashPipelineNode = new PipelineNode(nameof(EstimatorName.Hashing), PipelineNodeType.Transform, "GroupId", "GroupId");
729
var
lightGbmPipelineNode = new PipelineNode(nameof(TrainerName.LightGbmRanking), PipelineNodeType.Trainer, "Features", "Score", hyperParam);
730
var pipeline = new Pipeline(new
PipelineNode
[]
765
var
onnxPipeLineNode = new PipelineNode(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, string.Empty, string.Empty);
766
var
loadImageNode = new PipelineNode(EstimatorName.ImageLoading.ToString(), PipelineNodeType.Transform, "ImageSource", "ImageSource_featurized");
767
var
resizeImageNode = new PipelineNode(
777
var
extractPixelsNode = new PipelineNode(nameof(SpecialTransformer.ExtractPixel), PipelineNodeType.Transform, "ImageSource_featurized", "input1");
778
var bestPipeLine = new Pipeline(new
PipelineNode
[]
811
var
onnxPipeLineNode = new PipelineNode(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, string.Empty, string.Empty);
812
var bestPipeLine = new Pipeline(new
PipelineNode
[]
981
var
onnxPipeLineNode = new PipelineNode(nameof(SpecialTransformer.ApplyOnnxModel), PipelineNodeType.Transform, new[] { "input.1" }, new[] { "output.1" },
987
var bestPipeLine = new Pipeline(new
PipelineNode
[]
CodeGenTests.cs (12)
33
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
34
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
54
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
55
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
69
PipelineNode
node = new PipelineNode("Normalizing", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
70
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
72
var actual = codeGenerator.GenerateTransformsAndUsings(new List<
PipelineNode
>() { node });
83
PipelineNode
node = new PipelineNode("OneHotEncoding", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
84
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
86
var actual = codeGenerator.GenerateTransformsAndUsings(new List<
PipelineNode
>() { node });
127
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, new string[] { "Label" }, default(string), elementProperties);
128
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
TrainerGeneratorTests.cs (80)
35
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
36
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
63
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
64
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
85
PipelineNode
node = new PipelineNode("LightGbmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
86
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
103
PipelineNode
node = new PipelineNode("SymbolicSgdLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
104
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
123
PipelineNode
node = new PipelineNode("SymbolicSgdLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
124
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
140
PipelineNode
node = new PipelineNode("SgdCalibratedBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
141
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
160
PipelineNode
node = new PipelineNode("SgdCalibratedBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
161
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
177
PipelineNode
node = new PipelineNode("SdcaLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
178
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
197
PipelineNode
node = new PipelineNode("SdcaLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
198
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
214
PipelineNode
node = new PipelineNode("SdcaMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
215
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
234
PipelineNode
node = new PipelineNode("SdcaMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
235
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
251
PipelineNode
node = new PipelineNode("SdcaRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
252
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
271
PipelineNode
node = new PipelineNode("SdcaRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
272
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
287
PipelineNode
node = new PipelineNode("MatrixFactorization", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
288
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
313
PipelineNode
node = new PipelineNode("MatrixFactorization", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
314
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
328
PipelineNode
node = new PipelineNode("LbfgsPoissonRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
329
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
348
PipelineNode
node = new PipelineNode("LbfgsPoissonRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
349
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
365
PipelineNode
node = new PipelineNode("OlsRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
366
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
385
PipelineNode
node = new PipelineNode("OlsRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
386
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
402
PipelineNode
node = new PipelineNode("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
403
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
422
PipelineNode
node = new PipelineNode("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
423
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
439
PipelineNode
node = new PipelineNode("LbfgsLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
440
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
459
PipelineNode
node = new PipelineNode("LbfgsLogisticRegressionBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
460
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
476
PipelineNode
node = new PipelineNode("LbfgsMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
477
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
496
PipelineNode
node = new PipelineNode("LbfgsMaximumEntropyMulti", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
497
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
513
PipelineNode
node = new PipelineNode("LinearSvmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
514
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
533
PipelineNode
node = new PipelineNode("LinearSvmBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
534
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
551
PipelineNode
node = new PipelineNode("FastTreeTweedieRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
552
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
571
PipelineNode
node = new PipelineNode("OnlineGradientDescentRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
572
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
589
PipelineNode
node = new PipelineNode("FastTreeRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
590
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
609
PipelineNode
node = new PipelineNode("FastTreeRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
610
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
627
PipelineNode
node = new PipelineNode("FastTreeBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
628
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
647
PipelineNode
node = new PipelineNode("FastTreeBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
648
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
665
PipelineNode
node = new PipelineNode("FastForestRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
666
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
684
PipelineNode
node = new PipelineNode("FastForestRegression", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
685
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
702
PipelineNode
node = new PipelineNode("FastForestBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
703
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
722
PipelineNode
node = new PipelineNode("FastForestBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
723
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
740
PipelineNode
node = new PipelineNode("AveragedPerceptronBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
741
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
760
PipelineNode
node = new PipelineNode("AveragedPerceptronBinary", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
761
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
775
PipelineNode
node = new PipelineNode("ImageClassification", PipelineNodeType.Trainer, default(string[]), default(string), elementProperties);
776
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
TransformGeneratorTests.cs (39)
26
PipelineNode
node = new PipelineNode("MissingValueReplacing", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties);
27
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
29
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
40
PipelineNode
node = new PipelineNode("OneHotEncoding", PipelineNodeType.Transform, new string[] { "categorical_column_1" }, new string[] { "categorical_column_1" }, elementProperties);
41
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
43
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
54
PipelineNode
node = new PipelineNode("Normalizing", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1_copy" }, elementProperties);
55
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
57
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
68
PipelineNode
node = new PipelineNode("ColumnConcatenating", PipelineNodeType.Transform, new string[] { "numeric_column_1", "numeric_column_2" }, new string[] { "Features" }, elementProperties);
69
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
71
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
82
PipelineNode
node = new PipelineNode("ColumnCopying", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_2" }, elementProperties);
83
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
85
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
96
PipelineNode
node = new PipelineNode("KeyToValueMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
97
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
99
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
110
PipelineNode
node = new PipelineNode("MissingValueIndicating", PipelineNodeType.Transform, new string[] { "numeric_column_1" }, new string[] { "numeric_column_1" }, elementProperties);
111
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
113
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
124
PipelineNode
node = new PipelineNode("OneHotHashEncoding", PipelineNodeType.Transform, new string[] { "Categorical_column_1" }, new string[] { "Categorical_column_1" }, elementProperties);
125
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
127
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
138
PipelineNode
node = new PipelineNode("TextFeaturizing", PipelineNodeType.Transform, new string[] { "Text_column_1" }, new string[] { "Text_column_1" }, elementProperties);
139
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
141
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
152
PipelineNode
node = new PipelineNode("TypeConverting", PipelineNodeType.Transform, new string[] { "I4_column_1" }, new string[] { "R4_column_1" }, elementProperties);
153
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
155
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
166
PipelineNode
node = new PipelineNode("ValueToKeyMapping", PipelineNodeType.Transform, new string[] { "Label" }, new string[] { "Label" }, elementProperties);
167
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
169
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
178
PipelineNode
node = new PipelineNode("ImageLoading", PipelineNodeType.Transform,
181
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
183
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });
192
PipelineNode
node = new PipelineNode("RawByteImageLoading", PipelineNodeType.Transform,
195
Pipeline pipeline = new Pipeline(new
PipelineNode
[] { node });
197
var actual = codeGenerator.GenerateTransformsAndUsings(new
PipelineNode
[] { node });