1 write to Context
Microsoft.ML.AutoML (1)
API\ExperimentBase.cs (1)
38
Context
= context;
51 references to Context
Microsoft.ML.AutoML (51)
API\BinaryClassificationExperiment.cs (14)
183
var splitData =
Context
.Data.TrainTestSplit(trainData);
198
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
207
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
208
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
231
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
240
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
241
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
285
var detail = BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline);
295
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline));
296
var bestResult = BestResultUtil.ToCrossValidationRunDetail(
Context
, monitor.BestRun, _pipeline);
334
return preFeaturizer.Append(
Context
.Auto().Featurizer(trainData, columnInformation, Features))
335
.Append(
Context
.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
339
return
Context
.Auto().Featurizer(trainData, columnInformation, Features)
340
.Append(
Context
.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
API\ExperimentBase.cs (11)
122
var splitResult = SplitUtil.CrossValSplit(
Context
, trainData, numCrossValFolds, samplingKeyColumnName);
127
var splitResult = SplitUtil.TrainValidateSplit(
Context
, trainData, samplingKeyColumnName);
223
var splitResult = SplitUtil.CrossValSplit(
Context
, trainData, numberOfCVFolds, samplingKeyColumnName);
290
var runner = new TrainValidateRunner<TMetrics>(
Context
, trainData, validationData, columnInfo.GroupIdColumnName, columnInfo.LabelColumnName, MetricsAgent,
292
var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(
Context
, trainData, columnInfo);
309
var runner = new CrossValRunner<TMetrics>(
Context
, trainDatasets, validationDatasets, MetricsAgent, preFeaturizer,
311
var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(
Context
, trainDatasets[0], columnInfo);
314
var experiment = new Experiment<CrossValidationRunDetail<TMetrics>, TMetrics>(
Context
, _task, OptimizingMetricInfo, progressHandler,
336
var runner = new CrossValSummaryRunner<TMetrics>(
Context
, trainDatasets, validationDatasets, MetricsAgent, preFeaturizer,
338
var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(
Context
, trainDatasets[0], columnInfo);
349
var experiment = new Experiment<RunDetail<TMetrics>, TMetrics>(
Context
, _task, OptimizingMetricInfo, progressHandler,
API\MulticlassClassificationExperiment.cs (14)
167
var splitData =
Context
.Data.TrainTestSplit(trainData);
183
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
193
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
194
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
218
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
228
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
229
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
275
var detail = BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline);
285
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline));
286
var bestResult = BestResultUtil.ToCrossValidationRunDetail(
Context
, monitor.BestRun, _pipeline);
331
pipeline = pipeline.Append(
Context
.Auto().Featurizer(trainData, columnInformation, Features));
332
pipeline = pipeline.Append(
Context
.Transforms.Conversion.MapValueToKey(label, label));
333
pipeline = pipeline.Append(
Context
.Auto().MultiClassification(label, useSdcaMaximumEntrophy: useSdcaMaximumEntrophy, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsMaximumEntrophy: uselbfgsME, useLbfgsLogisticRegression: uselbfgsLR, useFastForest: useFastForest, featureColumnName: Features));
334
pipeline = pipeline.Append(
Context
.Transforms.Conversion.MapKeyToValue(DefaultColumnNames.PredictedLabel, DefaultColumnNames.PredictedLabel));
API\RegressionExperiment.cs (12)
171
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
181
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
182
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
189
var splitData =
Context
.Data.TrainTestSplit(trainData);
212
var detail = BestResultUtil.ToRunDetail(
Context
, e, _pipeline);
222
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(
Context
, e, _pipeline));
223
var bestRun = BestResultUtil.ToRunDetail(
Context
, monitor.BestRun, _pipeline);
268
var detail = BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline);
278
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToCrossValidationRunDetail(
Context
, e, _pipeline));
279
var bestResult = BestResultUtil.ToCrossValidationRunDetail(
Context
, monitor.BestRun, _pipeline);
312
pipeline = pipeline.Append(
Context
.Auto().Featurizer(trainData, columnInformation, Features));
313
pipeline = pipeline.Append(
Context
.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsPoissonRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));