File: src\Workspaces\SharedUtilitiesAndExtensions\Compiler\Core\Utilities\AbstractSpeculationAnalyzer.cs
Web Access
Project: src\src\CodeStyle\Core\Analyzers\Microsoft.CodeAnalysis.CodeStyle.csproj (Microsoft.CodeAnalysis.CodeStyle)
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
 
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Threading;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.LanguageService;
using Microsoft.CodeAnalysis.Shared.Extensions;
using Roslyn.Utilities;
 
namespace Microsoft.CodeAnalysis.Shared.Utilities;
 
/// <summary>
/// Helper class to analyze the semantic effects of a speculated syntax node replacement on the parenting nodes.
/// Given an expression node from a syntax tree and a new expression from a different syntax tree,
/// it replaces the expression with the new expression to create a speculated syntax tree.
/// It uses the original tree's semantic model to create a speculative semantic model and verifies that
/// the syntax replacement doesn't break the semantics of any parenting nodes of the original expression.
/// </summary>
internal abstract class AbstractSpeculationAnalyzer<
        TExpressionSyntax,
        TTypeSyntax,
        TAttributeSyntax,
        TArgumentSyntax,
        TForEachStatementSyntax,
        TThrowStatementSyntax,
        TInvocationExpressionSyntax,
        TConversion> : ISpeculationAnalyzer
    where TExpressionSyntax : SyntaxNode
    where TTypeSyntax : TExpressionSyntax
    where TAttributeSyntax : SyntaxNode
    where TArgumentSyntax : SyntaxNode
    where TForEachStatementSyntax : SyntaxNode
    where TThrowStatementSyntax : SyntaxNode
    where TInvocationExpressionSyntax : TExpressionSyntax
    where TConversion : struct
{
    private readonly TExpressionSyntax _newExpressionForReplace;
    private readonly bool _skipVerificationForReplacedNode;
    private readonly bool _failOnOverloadResolutionFailuresInOriginalCode;
    private readonly bool _isNewSemanticModelSpeculativeModel;
 
    private SyntaxNode? _lazySemanticRootOfOriginalExpression;
    private TExpressionSyntax? _lazyReplacedExpression;
    private SyntaxNode? _lazySemanticRootOfReplacedExpression;
    private SemanticModel? _lazySpeculativeSemanticModel;
 
    private static readonly SymbolEquivalenceComparer s_includeNullabilityComparer =
        SymbolEquivalenceComparer.Create(distinguishRefFromOut: true, tupleNamesMustMatch: true, ignoreNullableAnnotations: false, objectAndDynamicCompareEqually: false, arrayAndReadOnlySpanCompareEqually: false);
 
    private static readonly SymbolEquivalenceComparer s_arrayAndReadOnlySpanCompareEqually = s_includeNullabilityComparer.With(arrayAndReadOnlySpanCompareEqually: true);
 
    /// <summary>
    /// Creates a semantic analyzer for speculative syntax replacement.
    /// </summary>
    /// <param name="expression">Original expression to be replaced.</param>
    /// <param name="newExpression">New expression to replace the original expression.</param>
    /// <param name="semanticModel">Semantic model of <paramref name="expression"/> node's syntax tree.</param>
    /// <param name="cancellationToken">Cancellation token.</param>
    /// <param name="skipVerificationForReplacedNode">
    /// True if semantic analysis should be skipped for the replaced node and performed starting from parent of the original and replaced nodes.
    /// This could be the case when custom verifications are required to be done by the caller or
    /// semantics of the replaced expression are different from the original expression.
    /// </param>
    /// <param name="failOnOverloadResolutionFailuresInOriginalCode">
    /// True if semantic analysis should fail when any of the invocation expression ancestors of <paramref name="expression"/> in original code has overload resolution failures.
    /// </param>
    public AbstractSpeculationAnalyzer(
        TExpressionSyntax expression,
        TExpressionSyntax newExpression,
        SemanticModel semanticModel,
        CancellationToken cancellationToken,
        bool skipVerificationForReplacedNode = false,
        bool failOnOverloadResolutionFailuresInOriginalCode = false)
    {
        OriginalExpression = expression;
        _newExpressionForReplace = newExpression;
        OriginalSemanticModel = semanticModel;
        CancellationToken = cancellationToken;
        _skipVerificationForReplacedNode = skipVerificationForReplacedNode;
        _failOnOverloadResolutionFailuresInOriginalCode = failOnOverloadResolutionFailuresInOriginalCode;
        _isNewSemanticModelSpeculativeModel = true;
        _lazyReplacedExpression = null;
        _lazySemanticRootOfOriginalExpression = null;
        _lazySemanticRootOfReplacedExpression = null;
        _lazySpeculativeSemanticModel = null;
    }
 
    protected abstract ISyntaxFacts SyntaxFactsService { get; }
 
    protected abstract SyntaxNode GetSemanticRootForSpeculation(TExpressionSyntax expression);
    protected abstract SemanticModel CreateSpeculativeSemanticModel(SyntaxNode originalNode, SyntaxNode nodeToSpeculate, SemanticModel semanticModel);
 
    protected abstract bool IsInNamespaceOrTypeContext(TExpressionSyntax node);
    protected abstract bool ExpressionMightReferenceMember([NotNullWhen(true)] SyntaxNode? node);
    protected abstract bool CanAccessInstanceMemberThrough(TExpressionSyntax? expression);
 
    protected abstract TConversion ClassifyConversion(SemanticModel model, TExpressionSyntax expression, ITypeSymbol targetType);
    protected abstract TConversion ClassifyConversion(SemanticModel model, ITypeSymbol originalType, ITypeSymbol targetType);
    protected abstract bool ConversionsAreCompatible(SemanticModel model1, TExpressionSyntax expression1, SemanticModel model2, TExpressionSyntax expression2);
    protected abstract bool ConversionsAreCompatible(TExpressionSyntax originalExpression, ITypeSymbol originalTargetType, TExpressionSyntax newExpression, ITypeSymbol newTargetType);
    protected abstract bool IsReferenceConversion(Compilation model, ITypeSymbol sourceType, ITypeSymbol targetType);
 
    protected abstract TExpressionSyntax GetForEachStatementExpression(TForEachStatementSyntax forEachStatement);
    protected abstract bool IsForEachTypeInferred(TForEachStatementSyntax forEachStatement, SemanticModel semanticModel);
    protected abstract bool ForEachConversionsAreCompatible(SemanticModel originalModel, TForEachStatementSyntax originalForEach, SemanticModel newModel, TForEachStatementSyntax newForEach);
    protected abstract void GetForEachSymbols(
        SemanticModel model, TForEachStatementSyntax forEach, out IMethodSymbol getEnumeratorMethod, out ITypeSymbol elementType, out ImmutableArray<ILocalSymbol> localVariables);
 
    protected abstract bool ReplacementChangesSemanticsForNodeLanguageSpecific(SyntaxNode currentOriginalNode, SyntaxNode currentReplacedNode, SyntaxNode? previousOriginalNode, SyntaxNode? previousReplacedNode);
 
    protected abstract bool IsParenthesizedExpression([NotNullWhen(true)] SyntaxNode? node);
    protected abstract bool IsNamedArgument(TArgumentSyntax argument);
    protected abstract string GetNamedArgumentIdentifierValueText(TArgumentSyntax argument);
    protected abstract TExpressionSyntax GetThrowStatementExpression(TThrowStatementSyntax throwStatement);
    protected abstract ImmutableArray<TArgumentSyntax> GetArguments(TExpressionSyntax expression);
    protected abstract TExpressionSyntax GetReceiver(TExpressionSyntax expression);
 
    /// <summary>
    /// Original expression to be replaced.
    /// </summary>
    public TExpressionSyntax OriginalExpression { get; }
 
    SyntaxNode ISpeculationAnalyzer.OriginalExpression => OriginalExpression;
 
    /// <summary>
    /// First ancestor of <see cref="OriginalExpression"/> which is either a statement, attribute, constructor initializer,
    /// field initializer, default parameter initializer or type syntax node.
    /// It serves as the root node for all semantic analysis for this syntax replacement.
    /// </summary>
    public SyntaxNode SemanticRootOfOriginalExpression
    {
        get
        {
            if (_lazySemanticRootOfOriginalExpression == null)
            {
                _lazySemanticRootOfOriginalExpression = GetSemanticRootForSpeculation(this.OriginalExpression);
                RoslynDebug.AssertNotNull(_lazySemanticRootOfOriginalExpression);
            }
 
            return _lazySemanticRootOfOriginalExpression;
        }
    }
 
    /// <summary>
    /// Semantic model for the syntax tree corresponding to <see cref="OriginalExpression"/>
    /// </summary>
    public SemanticModel OriginalSemanticModel { get; }
 
    /// <summary>
    /// Node which replaces the <see cref="OriginalExpression"/>.
    /// Note that this node is a cloned version of <see cref="_newExpressionForReplace"/> node, which has been re-parented
    /// under the node to be speculated, i.e. <see cref="SemanticRootOfReplacedExpression"/>.
    /// </summary>
    public TExpressionSyntax ReplacedExpression
    {
        get
        {
            EnsureReplacedExpressionAndSemanticRoot();
            return _lazyReplacedExpression;
        }
    }
 
    SyntaxNode ISpeculationAnalyzer.ReplacedExpression => ReplacedExpression;
 
    /// <summary>
    /// Node created by replacing <see cref="OriginalExpression"/> under <see cref="SemanticRootOfOriginalExpression"/> node.
    /// This node is used as the argument to the GetSpeculativeSemanticModel API and serves as the root node for all
    /// semantic analysis of the speculated tree.
    /// </summary>
    public SyntaxNode SemanticRootOfReplacedExpression
    {
        get
        {
            EnsureReplacedExpressionAndSemanticRoot();
            return _lazySemanticRootOfReplacedExpression;
        }
    }
 
    /// <summary>
    /// Speculative semantic model used for analyzing the semantics of the new tree.
    /// </summary>
    public SemanticModel SpeculativeSemanticModel
    {
        get
        {
            EnsureSpeculativeSemanticModel();
            return _lazySpeculativeSemanticModel;
        }
    }
 
    public CancellationToken CancellationToken { get; }
 
    protected virtual SyntaxNode GetSemanticRootOfReplacedExpression(SyntaxNode semanticRootOfOriginalExpression, TExpressionSyntax annotatedReplacedExpression)
        => semanticRootOfOriginalExpression.ReplaceNode(this.OriginalExpression, annotatedReplacedExpression);
 
    [MemberNotNull(nameof(_lazySemanticRootOfReplacedExpression), nameof(_lazyReplacedExpression))]
    private void EnsureReplacedExpressionAndSemanticRoot()
    {
        if (_lazySemanticRootOfReplacedExpression == null)
        {
            // Because the new expression will change identity once we replace the old
            // expression in its parent, we annotate it here to allow us to get back to
            // it after replace.
            var annotation = new SyntaxAnnotation();
            var annotatedExpression = _newExpressionForReplace.WithAdditionalAnnotations(annotation);
            _lazySemanticRootOfReplacedExpression = GetSemanticRootOfReplacedExpression(this.SemanticRootOfOriginalExpression, annotatedExpression);
            _lazyReplacedExpression = (TExpressionSyntax)_lazySemanticRootOfReplacedExpression.GetAnnotatedNodesAndTokens(annotation).Single().AsNode()!;
        }
        else
        {
            RoslynDebug.AssertNotNull(_lazyReplacedExpression);
        }
    }
 
    [Conditional("DEBUG")]
    protected abstract void ValidateSpeculativeSemanticModel(SemanticModel speculativeSemanticModel, SyntaxNode nodeToSpeculate);
 
    [MemberNotNull(nameof(_lazySpeculativeSemanticModel))]
    private void EnsureSpeculativeSemanticModel()
    {
        if (_lazySpeculativeSemanticModel == null)
        {
            var nodeToSpeculate = this.SemanticRootOfReplacedExpression;
            _lazySpeculativeSemanticModel = CreateSpeculativeSemanticModel(this.SemanticRootOfOriginalExpression, nodeToSpeculate, OriginalSemanticModel);
            ValidateSpeculativeSemanticModel(_lazySpeculativeSemanticModel, nodeToSpeculate);
        }
    }
 
    #region Semantic comparison helpers
 
    protected virtual bool ReplacementIntroducesDisallowedNullType(
        TExpressionSyntax originalExpression,
        TExpressionSyntax newExpression,
        TypeInfo originalTypeInfo,
        TypeInfo newTypeInfo)
    {
        // If the original expression had no type, it's fine for the new one to have no type either.
        if (originalTypeInfo.Type == null)
            return false;
 
        // If the original had a type, but the new expression doesn't, this is *normally* bad.  However, there are
        // some cases where it is ok (untyped language expressions that have natural conversions to typed
        // expressions).  Subclasses can override this for those cases.
        if (newTypeInfo.Type == null)
            return true;
 
        // Otherwise, things look ok so far.
        return false;
    }
 
    protected bool TypesAreCompatible(TExpressionSyntax originalExpression, TExpressionSyntax newExpression)
    {
        RoslynDebug.AssertNotNull(originalExpression);
        Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalExpression));
        RoslynDebug.AssertNotNull(newExpression);
        Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newExpression));
 
        var originalTypeInfo = this.OriginalSemanticModel.GetTypeInfo(originalExpression);
        var newTypeInfo = this.SpeculativeSemanticModel.GetTypeInfo(newExpression);
        if (SymbolsAreCompatible(originalTypeInfo.Type, newTypeInfo.Type))
            return true;
 
        // types changed between the old and new expression (specifically, the new type became null, while the
        // original type was not).  That's ok in some circumstance.  Check for those and allow in that specific
        // case.
        if (originalTypeInfo.Type != null && newTypeInfo.Type == null &&
            !ReplacementIntroducesDisallowedNullType(originalExpression, newExpression, originalTypeInfo, newTypeInfo))
        {
            return true;
        }
 
        return false;
    }
 
    protected bool ConvertedTypesAreCompatible(TExpressionSyntax originalExpression, TExpressionSyntax newExpression)
    {
        RoslynDebug.AssertNotNull(originalExpression);
        Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalExpression));
        RoslynDebug.AssertNotNull(newExpression);
        Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newExpression));
 
        var originalTypeInfo = this.OriginalSemanticModel.GetTypeInfo(originalExpression);
        var newTypeInfo = this.SpeculativeSemanticModel.GetTypeInfo(newExpression);
        return SymbolsAreCompatible(originalTypeInfo.ConvertedType, newTypeInfo.ConvertedType);
    }
 
    protected bool ImplicitConversionsAreCompatible(TExpressionSyntax originalExpression, TExpressionSyntax newExpression)
    {
        RoslynDebug.AssertNotNull(originalExpression);
        Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalExpression));
        RoslynDebug.AssertNotNull(newExpression);
        Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newExpression));
 
        return ConversionsAreCompatible(this.OriginalSemanticModel, originalExpression, this.SpeculativeSemanticModel, newExpression);
    }
 
    private bool ImplicitConversionsAreCompatible(TExpressionSyntax originalExpression, ITypeSymbol originalTargetType, TExpressionSyntax newExpression, ITypeSymbol newTargetType)
    {
        RoslynDebug.AssertNotNull(originalExpression);
        Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalExpression));
        RoslynDebug.AssertNotNull(newExpression);
        Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newExpression));
        RoslynDebug.AssertNotNull(originalTargetType);
        RoslynDebug.AssertNotNull(newTargetType);
 
        return ConversionsAreCompatible(originalExpression, originalTargetType, newExpression, newTargetType);
    }
 
    protected bool SymbolsAreCompatible(SyntaxNode originalNode, SyntaxNode newNode, bool requireNonNullSymbols = false)
    {
        RoslynDebug.AssertNotNull(originalNode);
        Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalNode));
        RoslynDebug.AssertNotNull(newNode);
        Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newNode));
 
        var originalSymbolInfo = this.OriginalSemanticModel.GetSymbolInfo(originalNode);
        var newSymbolInfo = this.SpeculativeSemanticModel.GetSymbolInfo(newNode);
        return SymbolInfosAreCompatible(originalSymbolInfo, newSymbolInfo, requireNonNullSymbols);
    }
 
    public static bool SymbolInfosAreCompatible(SymbolInfo originalSymbolInfo, SymbolInfo newSymbolInfo, bool performEquivalenceCheck, bool requireNonNullSymbols = false)
    {
        if (originalSymbolInfo.CandidateReason == newSymbolInfo.CandidateReason)
        {
            if (SymbolsAreCompatibleCore(originalSymbolInfo.Symbol, newSymbolInfo.Symbol, performEquivalenceCheck, requireNonNullSymbols))
                return true;
 
            if (originalSymbolInfo.CandidateReason == CandidateReason.MemberGroup)
            {
                var candidateLength = originalSymbolInfo.CandidateSymbols.Length;
                if (candidateLength > 0 && candidateLength == newSymbolInfo.CandidateSymbols.Length)
                {
                    for (int i = 0, n = candidateLength; i < n; i++)
                    {
                        if (!SymbolsAreCompatibleCore(originalSymbolInfo.CandidateSymbols[i], newSymbolInfo.CandidateSymbols[i], performEquivalenceCheck, requireNonNullSymbols))
                            return false;
                    }
 
                    return true;
                }
            }
        }
 
        return false;
    }
 
    protected bool SymbolInfosAreCompatible(SymbolInfo originalSymbolInfo, SymbolInfo newSymbolInfo, bool requireNonNullSymbols = false)
        => SymbolInfosAreCompatible(originalSymbolInfo, newSymbolInfo, performEquivalenceCheck: !_isNewSemanticModelSpeculativeModel, requireNonNullSymbols: requireNonNullSymbols);
 
    protected bool SymbolsAreCompatible(ISymbol? symbol, ISymbol? newSymbol, bool requireNonNullSymbols = false)
        => SymbolsAreCompatibleCore(symbol, newSymbol, performEquivalenceCheck: !_isNewSemanticModelSpeculativeModel, requireNonNullSymbols: requireNonNullSymbols);
 
    private static bool SymbolsAreCompatibleCore(
        ISymbol? symbol,
        ISymbol? newSymbol,
        bool performEquivalenceCheck,
        bool requireNonNullSymbols = false)
    {
        if (symbol == null && newSymbol == null)
        {
            return !requireNonNullSymbols;
        }
 
        if (symbol == null || newSymbol == null)
        {
            return false;
        }
 
        if (symbol.IsReducedExtension())
        {
            symbol = ((IMethodSymbol)symbol).GetConstructedReducedFrom()!;
        }
 
        if (newSymbol.IsReducedExtension())
        {
            newSymbol = ((IMethodSymbol)newSymbol).GetConstructedReducedFrom()!;
        }
 
        // TODO: Lambda function comparison performs syntax equality, hence is non-trivial to compare lambda methods across different compilations.
        // For now, just assume they are equal.
        if (symbol.IsAnonymousFunction())
        {
            return newSymbol.IsAnonymousFunction();
        }
 
        if (performEquivalenceCheck)
        {
            // We are comparing symbols across two semantic models (where neither is the speculative model of other one).
            // We will use the SymbolEquivalenceComparer to check if symbols are equivalent.
            return CompareAcrossSemanticModels(symbol, newSymbol);
        }
 
        if (s_includeNullabilityComparer.Equals(symbol, newSymbol))
            return true;
 
        if (symbol is IMethodSymbol methodSymbol && newSymbol is IMethodSymbol newMethodSymbol)
        {
            // If we have local functions, we can't use normal symbol equality for them (since that checks locations).
            // Have to defer to SymbolEquivalence instead.
            if (methodSymbol.MethodKind == MethodKind.LocalFunction && newMethodSymbol.MethodKind == MethodKind.LocalFunction)
                return CompareAcrossSemanticModels(methodSymbol, newMethodSymbol);
 
            // Handle equivalence of special built-in comparison operators between enum types and 
            // it's underlying enum type.
            if (methodSymbol.TryGetPredefinedComparisonOperator(out var originalOp) &&
                newMethodSymbol.TryGetPredefinedComparisonOperator(out var newOp) &&
                originalOp == newOp)
            {
                var type = methodSymbol.ContainingType;
                var newType = newMethodSymbol.ContainingType;
                if (type != null && newType != null)
                {
                    if (EnumTypesAreCompatible(type, newType) ||
                        EnumTypesAreCompatible(newType, type))
                    {
                        return true;
                    }
                }
            }
 
            // We consider two method overloads compatible if one takes a T[] array for a particular parameter, and the
            // other takes a ReadOnlySpan<T> for the same parameter.  This is a considered a supported and desirable API
            // upgrade story for API authors.  Specifically, they start with an array-based method, and then add a
            // sibling ROS method.  In that case, the language will prefer the latter when both are applicable.  So if
            // we make a code change that makes the second compatible, then we are ok with that, as the expectation is
            // that the new method has the same semantics and it is desirable for code to now call that.
            //
            // Note: this comparer will check the method kinds, name, containing type, arity, and virtually everything
            // else about the methods.  The only difference it will allow between the methods is that parameter types
            // can be different if they are an array vs a ReadOnlySpan.
            if (s_arrayAndReadOnlySpanCompareEqually.Equals(methodSymbol, newMethodSymbol))
                return true;
        }
 
        return false;
    }
 
    private static bool CompareAcrossSemanticModels(ISymbol symbol, ISymbol newSymbol)
    {
        // SymbolEquivalenceComparer performs Location equality checks for locals, labels, range-variables and local
        // functions. As we are comparing symbols from different semantic models, locations will differ. Hence
        // perform minimal checks for these symbol kinds.
 
        if (symbol.Kind != newSymbol.Kind)
            return false;
 
        if (symbol is ILocalSymbol localSymbol && newSymbol is ILocalSymbol newLocalSymbol)
        {
            return newSymbol.IsImplicitlyDeclared == symbol.IsImplicitlyDeclared &&
                   symbol.Name == newSymbol.Name &&
                   CompareAcrossSemanticModels(localSymbol.Type, newLocalSymbol.Type);
        }
 
        if (symbol is ILabelSymbol && newSymbol is ILabelSymbol)
            return symbol.Name == newSymbol.Name;
 
        if (symbol is IRangeVariableSymbol && newSymbol is IRangeVariableSymbol)
            return symbol.Name == newSymbol.Name;
 
        if (symbol is IParameterSymbol parameterSymbol &&
            newSymbol is IParameterSymbol newParameterSymbol &&
            parameterSymbol.ContainingSymbol.IsAnonymousOrLocalFunction() &&
            newParameterSymbol.ContainingSymbol.IsAnonymousOrLocalFunction())
        {
            return symbol.Name == newSymbol.Name &&
                   parameterSymbol.IsRefOrOut() == newParameterSymbol.IsRefOrOut() &&
                   CompareAcrossSemanticModels(parameterSymbol.Type, newParameterSymbol.Type);
        }
 
        if (symbol is IMethodSymbol { MethodKind: MethodKind.LocalFunction } methodSymbol &&
            newSymbol is IMethodSymbol { MethodKind: MethodKind.LocalFunction } newMethodSymbol)
        {
            return symbol.Name == newSymbol.Name &&
                   methodSymbol.Parameters.Length == newMethodSymbol.Parameters.Length &&
                   CompareAcrossSemanticModels(methodSymbol.ReturnType, newMethodSymbol.ReturnType) &&
                   methodSymbol.Parameters.Zip(newMethodSymbol.Parameters, (p1, p2) => (p1, p2)).All(
                       t => CompareAcrossSemanticModels(t.p1, t.p2));
        }
 
        return SymbolEquivalenceComparer.Instance.Equals(symbol, newSymbol);
    }
 
    private static bool EnumTypesAreCompatible(INamedTypeSymbol type1, INamedTypeSymbol type2)
        => type1.IsEnumType() &&
           type1.EnumUnderlyingType?.SpecialType == type2.SpecialType;
 
    #endregion
 
    /// <summary>
    /// Determines whether performing the given syntax replacement will change the semantics of any parenting expressions
    /// by performing a bottom up walk from the <see cref="OriginalExpression"/> up to <see cref="SemanticRootOfOriginalExpression"/>
    /// in the original tree and simultaneously walking bottom up from <see cref="ReplacedExpression"/> up to <see cref="SemanticRootOfReplacedExpression"/>
    /// in the speculated syntax tree and performing appropriate semantic comparisons.
    /// </summary>
    public bool ReplacementChangesSemantics()
    {
        if (this.SemanticRootOfOriginalExpression is TTypeSyntax)
        {
            var originalType = (TTypeSyntax)this.OriginalExpression;
            var newType = (TTypeSyntax)this.ReplacedExpression;
            return ReplacementBreaksTypeResolution(originalType, newType, useSpeculativeModel: false);
        }
 
        return ReplacementChangesSemantics(
            currentOriginalNode: this.OriginalExpression,
            currentReplacedNode: this.ReplacedExpression,
            originalRoot: this.SemanticRootOfOriginalExpression,
            skipVerificationForCurrentNode: _skipVerificationForReplacedNode);
    }
 
    protected bool ReplacementChangesSemantics(SyntaxNode currentOriginalNode, SyntaxNode currentReplacedNode, SyntaxNode originalRoot, bool skipVerificationForCurrentNode)
    {
        if (this.SpeculativeSemanticModel == null)
        {
            // This is possible for some broken code scenarios with parse errors, bail out gracefully here.
            return true;
        }
 
        SyntaxNode? previousOriginalNode = null, previousReplacedNode = null;
 
        while (true)
        {
            if (!skipVerificationForCurrentNode &&
                ReplacementChangesSemanticsForNode(
                    currentOriginalNode, currentReplacedNode,
                    previousOriginalNode, previousReplacedNode))
            {
                return true;
            }
 
            if (currentOriginalNode == originalRoot)
            {
                break;
            }
 
            RoslynDebug.AssertNotNull(currentOriginalNode.Parent);
            RoslynDebug.AssertNotNull(currentReplacedNode.Parent);
 
            previousOriginalNode = currentOriginalNode;
            previousReplacedNode = currentReplacedNode;
            currentOriginalNode = currentOriginalNode.Parent;
            currentReplacedNode = currentReplacedNode.Parent;
            skipVerificationForCurrentNode = skipVerificationForCurrentNode && IsParenthesizedExpression(currentReplacedNode);
        }
 
        return false;
    }
 
    /// <summary>
    /// Checks whether the semantic symbols for the <see cref="OriginalExpression"/> and <see cref="ReplacedExpression"/> are non-null and compatible.
    /// </summary>
    public bool SymbolsForOriginalAndReplacedNodesAreCompatible()
    {
        if (this.SpeculativeSemanticModel == null)
        {
            // This is possible for some broken code scenarios with parse errors, bail out gracefully here.
            return false;
        }
 
        return SymbolsAreCompatible(this.OriginalExpression, this.ReplacedExpression, requireNonNullSymbols: true);
    }
 
    private bool ReplacementChangesSemanticsForNode(SyntaxNode currentOriginalNode, SyntaxNode currentReplacedNode, SyntaxNode? previousOriginalNode, SyntaxNode? previousReplacedNode)
    {
        Debug.Assert(previousOriginalNode == null || previousOriginalNode.Parent == currentOriginalNode);
        Debug.Assert(previousReplacedNode == null || previousReplacedNode.Parent == currentReplacedNode);
 
        if (!InvocationsAreCompatible(currentOriginalNode as TInvocationExpressionSyntax, currentReplacedNode as TInvocationExpressionSyntax))
            return true;
 
        if (ExpressionMightReferenceMember(currentOriginalNode))
        {
            // If replacing the node will result in a change in overload resolution, we won't remove it.
            var originalExpression = (TExpressionSyntax)currentOriginalNode;
            var newExpression = (TExpressionSyntax)currentReplacedNode;
            if (ReplacementBreaksExpression(originalExpression, newExpression))
            {
                return true;
            }
 
            if (ReplacementBreaksSystemObjectMethodResolution(currentOriginalNode, currentReplacedNode, previousOriginalNode, previousReplacedNode))
            {
                return true;
            }
 
            return !ImplicitConversionsAreCompatible(originalExpression, newExpression);
        }
        else if (currentOriginalNode is TForEachStatementSyntax originalForEachStatement)
        {
            var newForEachStatement = (TForEachStatementSyntax)currentReplacedNode;
            return ReplacementBreaksForEachStatement(originalForEachStatement, newForEachStatement);
        }
        else if (currentOriginalNode is TAttributeSyntax originalAttribute)
        {
            var newAttribute = (TAttributeSyntax)currentReplacedNode;
            return ReplacementBreaksAttribute(originalAttribute, newAttribute);
        }
        else if (currentOriginalNode is TThrowStatementSyntax originalThrowStatement)
        {
            var newThrowStatement = (TThrowStatementSyntax)currentReplacedNode;
            return ReplacementBreaksThrowStatement(originalThrowStatement, newThrowStatement);
        }
        else if (ReplacementChangesSemanticsForNodeLanguageSpecific(currentOriginalNode, currentReplacedNode, previousOriginalNode, previousReplacedNode))
        {
            return true;
        }
 
        if (currentOriginalNode is TTypeSyntax originalType)
        {
            var newType = (TTypeSyntax)currentReplacedNode;
            return ReplacementBreaksTypeResolution(originalType, newType);
        }
        else if (currentOriginalNode is TExpressionSyntax originalExpression)
        {
            var newExpression = (TExpressionSyntax)currentReplacedNode;
            if (!ImplicitConversionsAreCompatible(originalExpression, newExpression))
                return true;
 
            RoslynDebug.AssertNotNull(originalExpression);
            Debug.Assert(this.SemanticRootOfOriginalExpression.DescendantNodesAndSelf().Contains(originalExpression));
            RoslynDebug.AssertNotNull(newExpression);
            Debug.Assert(this.SemanticRootOfReplacedExpression.DescendantNodesAndSelf().Contains(newExpression));
 
            var originalTypeInfo = this.OriginalSemanticModel.GetTypeInfo(originalExpression);
            var newTypeInfo = this.SpeculativeSemanticModel.GetTypeInfo(newExpression);
 
            // If we didn't have an error before, but now we got one, that's bad and should block conversion in all cases.
            if (newTypeInfo.Type.IsErrorType() && !originalTypeInfo.Type.IsErrorType())
                return true;
 
            if (ReplacementIntroducesDisallowedNullType(originalExpression, newExpression, originalTypeInfo, newTypeInfo))
                return true;
        }
 
        return false;
    }
 
    private bool MemberAccessesAreCompatible(TExpressionSyntax? originalExpression, TExpressionSyntax? newExpression)
    {
        // If not expressions, nothing to do here.
        if (originalExpression is null && newExpression is null)
            return true;
 
        var syntaxFacts = this.SyntaxFactsService;
 
        // it is legal to go from expr.X to X if expr is either used for static-lookup (e.g.
        // `MyNs.MyType.MyStaticMember` -> `MyStaticMember`), or if it's used for instance lookup, but only if expr
        // is `this` or `base`.  We will ensure that the 'X' binds to the same symbol.  If so, the static case is
        // fine, as as long as the member is available without issue (e.g. accessibility etc.) then it doesn't
        // change meaning when switching.  The same holds true for an instance method with this/base as that is
        // allowed to be implicit if it binds to the same exact member.
 
        if (syntaxFacts.IsSimpleMemberAccessExpression(originalExpression) &&
            !syntaxFacts.IsSimpleMemberAccessExpression(newExpression))
        {
            // if we don't even have a name after simplification, this is never ok.
            if (!syntaxFacts.IsSimpleName(newExpression))
                return false;
 
            // The symbols before/after must be exactly the same (this also ensures that a base access of some
            // overridden method will be preserved as otherwise the symbols are different).
            if (!SymbolsAreCompatible(originalExpression, newExpression))
                return false;
 
            // If static became instance or instance became static, consider that a change in semantics.  Note: this
            // does mean a change from extension->instance call (or vice versa) will be seen as a change in
            // semantics.  We could potentially support this, but we'd have to do the analysis the instance invoked
            // on and the instance passed as the first parameter are identical.
 
            var originalIsStaticAccess = IsStaticAccess(OriginalSemanticModel.GetSymbolInfo(originalExpression, CancellationToken).Symbol);
            var replacedIsStaticAccess = IsStaticAccess(this.SpeculativeSemanticModel.GetSymbolInfo(newExpression, CancellationToken).Symbol);
            if (originalIsStaticAccess != replacedIsStaticAccess)
                return false;
 
            // When binding expr.A, if we didn't bind 'expr' binding to a type, namespace, or other static
            // thing, then we bound to an instance symbol. It's then only ok to remove 'expr' if 'expr' is
            // this/base.
            if (!originalIsStaticAccess)
            {
                var originalExpressionOfMemberAccess = syntaxFacts.GetExpressionOfMemberAccessExpression(originalExpression);
                if (!CanAccessInstanceMemberThrough((TExpressionSyntax?)originalExpressionOfMemberAccess))
                    return false;
            }
        }
 
        return true;
    }
 
    private static bool IsStaticAccess(ISymbol? symbol)
        => symbol is INamespaceOrTypeSymbol or { IsStatic: true };
 
    private bool InvocationsAreCompatible(TInvocationExpressionSyntax? originalInvocation, TInvocationExpressionSyntax? newInvocation)
    {
        // If not invocations, nothing to do here.
        if (originalInvocation is null && newInvocation is null)
            return true;
 
        if (originalInvocation is not null)
        {
            // Invocations must stay invocations after update.
            if (newInvocation is null)
                return false;
 
            var syntaxFacts = this.SyntaxFactsService;
            if (!MemberAccessesAreCompatible(
                    syntaxFacts.GetExpressionOfInvocationExpression(originalInvocation) as TExpressionSyntax,
                    syntaxFacts.GetExpressionOfInvocationExpression(newInvocation) as TExpressionSyntax))
            {
                return false;
            }
 
            // Add more invocation tests here.
        }
 
        // Add more operation tests here.
        return true;
    }
 
    /// <summary>
    /// Determine if removing the cast could cause the semantics of System.Object method call to change.
    /// E.g. Dim b = CStr(1).GetType() is necessary, but the GetType method symbol info resolves to the same with or without the cast.
    /// </summary>
    private bool ReplacementBreaksSystemObjectMethodResolution(SyntaxNode currentOriginalNode, SyntaxNode currentReplacedNode, [NotNullWhen(true)] SyntaxNode? previousOriginalNode, [NotNullWhen(true)] SyntaxNode? previousReplacedNode)
    {
        if (previousOriginalNode != null && previousReplacedNode != null)
        {
            var originalExpressionSymbol = this.OriginalSemanticModel.GetSymbolInfo(currentOriginalNode).Symbol;
            var replacedExpressionSymbol = this.SpeculativeSemanticModel.GetSymbolInfo(currentReplacedNode).Symbol;
 
            if (IsSymbolSystemObjectInstanceMethod(originalExpressionSymbol) && IsSymbolSystemObjectInstanceMethod(replacedExpressionSymbol))
            {
                var previousOriginalType = this.OriginalSemanticModel.GetTypeInfo(previousOriginalNode).Type;
                var previousReplacedType = this.SpeculativeSemanticModel.GetTypeInfo(previousReplacedNode).Type;
                if (previousReplacedType != null && previousOriginalType != null)
                {
                    return !previousReplacedType.InheritsFromOrEquals(previousOriginalType);
                }
            }
        }
 
        return false;
    }
 
    /// <summary>
    /// Determines if the symbol is a non-overridable, non static method on System.Object (e.g. GetType)
    /// </summary>
    private static bool IsSymbolSystemObjectInstanceMethod([NotNullWhen(true)] ISymbol? symbol)
    {
        return symbol != null
            && symbol.IsKind(SymbolKind.Method)
            && symbol.ContainingType.SpecialType == SpecialType.System_Object
            && !symbol.IsOverridable()
            && !symbol.IsStaticType();
    }
 
    private bool ReplacementBreaksAttribute(TAttributeSyntax attribute, TAttributeSyntax newAttribute)
    {
        var attributeSym = this.OriginalSemanticModel.GetSymbolInfo(attribute).Symbol;
        var newAttributeSym = this.SpeculativeSemanticModel.GetSymbolInfo(newAttribute).Symbol;
        return !SymbolsAreCompatible(attributeSym, newAttributeSym);
    }
 
    private bool ReplacementBreaksForEachStatement(TForEachStatementSyntax forEachStatement, TForEachStatementSyntax newForEachStatement)
    {
        var forEachExpression = GetForEachStatementExpression(forEachStatement);
        if (forEachExpression.IsMissing ||
            !forEachExpression.Span.Contains(OriginalExpression.SpanStart))
        {
            return false;
        }
 
        GetForEachSymbols(this.OriginalSemanticModel, forEachStatement, out var originalGetEnumerator, out var originalElementType, out var originalLocalVariables);
        GetForEachSymbols(this.SpeculativeSemanticModel, newForEachStatement, out var newGetEnumerator, out var newElementType, out var newLocalVariables);
 
        // inferred variable type compatible
        if (IsForEachTypeInferred(forEachStatement, OriginalSemanticModel))
        {
            if (originalLocalVariables.Length != newLocalVariables.Length)
                return true;
 
            for (int i = 0, n = originalLocalVariables.Length; i < n; i++)
            {
                if (!SymbolsAreCompatible(originalLocalVariables[i].Type, newLocalVariables[i].Type))
                    return true;
            }
        }
 
        var newForEachExpression = GetForEachStatementExpression(newForEachStatement);
 
        if (ReplacementBreaksForEachGetEnumerator(originalGetEnumerator, newGetEnumerator, newForEachExpression) ||
            !ForEachConversionsAreCompatible(this.OriginalSemanticModel, forEachStatement, this.SpeculativeSemanticModel, newForEachStatement) ||
            !SymbolsAreCompatible(originalElementType, newElementType))
        {
            return true;
        }
 
        return false;
    }
 
    private bool ReplacementBreaksForEachGetEnumerator(IMethodSymbol getEnumerator, IMethodSymbol newGetEnumerator, TExpressionSyntax newForEachStatementExpression)
    {
        if (getEnumerator == null && newGetEnumerator == null)
        {
            return false;
        }
 
        if (getEnumerator == null || newGetEnumerator == null)
        {
            return true;
        }
 
        if (getEnumerator.ToSignatureDisplayString() != newGetEnumerator.ToSignatureDisplayString())
        {
            // Note this is likely an interface member from IEnumerable but the new member may be a
            // GetEnumerator method on a specific type.
            if (getEnumerator.IsImplementableMember())
            {
                var expressionType = this.SpeculativeSemanticModel.GetTypeInfo(newForEachStatementExpression, CancellationToken).ConvertedType;
                if (expressionType != null)
                {
                    var implementationMember = expressionType.FindImplementationForInterfaceMember(getEnumerator);
                    if (implementationMember != null)
                    {
                        if (implementationMember.ToSignatureDisplayString() != newGetEnumerator.ToSignatureDisplayString())
                        {
                            return false;
                        }
                    }
                }
            }
 
            return true;
        }
 
        return false;
    }
 
    private bool ReplacementBreaksThrowStatement(TThrowStatementSyntax originalThrowStatement, TThrowStatementSyntax newThrowStatement)
    {
        var originalThrowExpression = GetThrowStatementExpression(originalThrowStatement);
        var originalThrowExpressionType = this.OriginalSemanticModel.GetTypeInfo(originalThrowExpression).Type;
        var newThrowExpression = GetThrowStatementExpression(newThrowStatement);
        var newThrowExpressionType = this.SpeculativeSemanticModel.GetTypeInfo(newThrowExpression).Type;
 
        // C# language specification requires that type of the expression passed to ThrowStatement is or derives from System.Exception.
        return originalThrowExpressionType.IsOrDerivesFromExceptionType(this.OriginalSemanticModel.Compilation) !=
            newThrowExpressionType.IsOrDerivesFromExceptionType(this.SpeculativeSemanticModel.Compilation);
    }
 
    private bool ReplacementBreaksTypeResolution(TTypeSyntax type, TTypeSyntax newType, bool useSpeculativeModel = true)
    {
        var symbol = this.OriginalSemanticModel.GetSymbolInfo(type).Symbol;
 
        ISymbol? newSymbol;
        if (useSpeculativeModel)
        {
            newSymbol = this.SpeculativeSemanticModel.GetSymbolInfo(newType, CancellationToken).Symbol;
        }
        else
        {
            var bindingOption = IsInNamespaceOrTypeContext(type) ? SpeculativeBindingOption.BindAsTypeOrNamespace : SpeculativeBindingOption.BindAsExpression;
            newSymbol = this.OriginalSemanticModel.GetSpeculativeSymbolInfo(type.SpanStart, newType, bindingOption).Symbol;
        }
 
        return symbol != null && !SymbolsAreCompatible(symbol, newSymbol);
    }
 
    private static bool IsDelegateInvoke(ISymbol symbol)
        => symbol is IMethodSymbol { MethodKind: MethodKind.DelegateInvoke };
 
    private static bool IsAnonymousDelegateInvoke(ISymbol symbol)
    {
        return IsDelegateInvoke(symbol) &&
            symbol.ContainingType != null &&
            symbol.ContainingType.IsAnonymousType();
    }
 
    private bool ReplacementBreaksExpression(TExpressionSyntax expression, TExpressionSyntax newExpression)
    {
        var originalSymbolInfo = OriginalSemanticModel.GetSymbolInfo(expression);
        if (_failOnOverloadResolutionFailuresInOriginalCode && originalSymbolInfo.CandidateReason == CandidateReason.OverloadResolutionFailure)
        {
            return true;
        }
 
        var newSymbolInfo = this.SpeculativeSemanticModel.GetSymbolInfo(node: newExpression);
        var symbol = originalSymbolInfo.Symbol;
        var newSymbol = newSymbolInfo.Symbol;
 
        if (SymbolInfosAreCompatible(originalSymbolInfo, newSymbolInfo))
        {
            // Original and new symbols for the invocation expression are compatible.
            // However, if the symbols are interface members and if the receiver symbol for one of the expressions is a possible ValueType type parameter,
            // and the other one is not, then there might be a boxing conversion at runtime which causes different runtime behavior.
            if (symbol.IsImplementableMember())
            {
                if (IsReceiverNonUniquePossibleValueTypeParam(expression, this.OriginalSemanticModel) !=
                    IsReceiverNonUniquePossibleValueTypeParam(newExpression, this.SpeculativeSemanticModel))
                {
                    return true;
                }
            }
 
            return false;
        }
 
        if (symbol == null || newSymbol == null || originalSymbolInfo.CandidateReason != newSymbolInfo.CandidateReason)
        {
            return true;
        }
 
        if (newSymbol.IsOverride)
        {
            for (var overriddenMember = newSymbol.GetOverriddenMember(); overriddenMember != null; overriddenMember = overriddenMember.GetOverriddenMember())
            {
                if (symbol.Equals(overriddenMember))
                    return !SymbolsHaveCompatibleParameterLists(symbol, newSymbol, expression);
            }
        }
 
        if (symbol.IsImplementableMember() &&
            IsCompatibleInterfaceMemberImplementation(
                symbol, newSymbol, expression, newExpression, this.SpeculativeSemanticModel))
        {
            return false;
        }
 
        // Allow speculated invocation expression to bind to a different method symbol if the method's containing type is a delegate type
        // which has a delegate variance conversion to/from the original method's containing delegate type.
        if (newSymbol.ContainingType.IsDelegateType() &&
            symbol.ContainingType.IsDelegateType() &&
            IsReferenceConversion(this.OriginalSemanticModel.Compilation, newSymbol.ContainingType, symbol.ContainingType))
        {
            return false;
        }
 
        // Heuristic: If we now bind to an anonymous delegate's invoke method, assume that
        // this isn't a change in overload resolution.
        if (IsAnonymousDelegateInvoke(newSymbol))
        {
            return false;
        }
 
        return true;
    }
 
    protected bool ReplacementBreaksCompoundAssignment(
        TExpressionSyntax originalLeft,
        TExpressionSyntax originalRight,
        TExpressionSyntax newLeft,
        TExpressionSyntax newRight)
    {
        var originalTargetType = this.OriginalSemanticModel.GetTypeInfo(originalLeft).Type;
        if (originalTargetType != null)
        {
            var newTargetType = this.SpeculativeSemanticModel.GetTypeInfo(newLeft).Type;
            return !SymbolsAreCompatible(originalTargetType, newTargetType) ||
                !ImplicitConversionsAreCompatible(originalRight, originalTargetType, newRight, newTargetType!);
        }
 
        return false;
    }
 
    private bool IsCompatibleInterfaceMemberImplementation(
        ISymbol symbol,
        ISymbol newSymbol,
        TExpressionSyntax originalExpression,
        TExpressionSyntax newExpression,
        SemanticModel speculativeSemanticModel)
    {
        // In general, we don't want to remove casts to interfaces.  It may have subtle changes in behavior,
        // especially if the types in question change in the future.  For example, if a type becomes non-sealed or a
        // new interface impl is introduced, we may subtly break things.
        //
        // The only cases where we feel confident enough to elide the cast are:
        //
        // 1. When we have an Array/Delegate/Enum. These are such core types, and cannot be changed by teh user,
        //    that we can trust their impls to not change.
        // 2. We have one of the builtin structs (like int). These are such core types, and cannot be changed by teh
        //    user, that we can trust their impls to not change.
        // 3. if we have a struct and we know we have a fresh copy of it.  In that case, boxing the struct to the
        //    interface doesn't serve any purpose.
 
        var newSymbolContainingType = newSymbol.ContainingType;
        if (newSymbolContainingType == null)
            return false;
 
        var newReceiver = GetReceiver(newExpression);
        var newReceiverType = newReceiver != null
            ? speculativeSemanticModel.GetTypeInfo(newReceiver).ConvertedType
            : newSymbolContainingType;
 
        if (newReceiverType == null)
            return false;
 
        var implementationMember = newSymbolContainingType.FindImplementationForInterfaceMember(symbol);
        if (implementationMember == null)
            return false;
 
        if (!newSymbol.Equals(implementationMember))
            return false;
 
        if (!SymbolsHaveCompatibleParameterLists(symbol, implementationMember, originalExpression))
            return false;
 
        if (newReceiverType.IsValueType)
        {
            // Presume builtin value types are all immutable, and thus will have the same semantics when you call
            // interface members on them directly instead of through a boxed copy.
            if (newReceiverType.SpecialType != SpecialType.None)
                return true;
 
            // For non-builtins, only remove the boxing if we know we have a copy already.
            return newReceiver != null && IsReceiverUniqueInstance(newReceiver, speculativeSemanticModel);
        }
 
        return newSymbolContainingType.SpecialType is SpecialType.System_Array or
               SpecialType.System_Delegate or
               SpecialType.System_Enum or
               SpecialType.System_String;
    }
 
    private bool IsReceiverNonUniquePossibleValueTypeParam(TExpressionSyntax invocation, SemanticModel semanticModel)
    {
        var receiver = GetReceiver(invocation);
        if (receiver != null)
        {
            var receiverType = semanticModel.GetTypeInfo(receiver).Type;
            if (receiverType.IsKind(SymbolKind.TypeParameter) && !receiverType.IsReferenceType)
            {
                return !IsReceiverUniqueInstance(receiver, semanticModel);
            }
        }
 
        return false;
    }
 
    // Returns true if the given receiver expression for an invocation represents a unique copy of the underlying
    // object that is not referenced by any other variable. For example, if the receiver expression is produced by a
    // method call, property, or indexer, then it will be a fresh receiver in the case of value types.
    private static bool IsReceiverUniqueInstance(TExpressionSyntax receiver, SemanticModel semanticModel)
    {
        var receiverSymbol = semanticModel.GetSymbolInfo(receiver).GetAnySymbol();
 
        if (receiverSymbol == null)
            return false;
 
        return receiverSymbol.IsKind(SymbolKind.Method) ||
               receiverSymbol.IsIndexer() ||
               receiverSymbol.IsKind(SymbolKind.Property);
    }
 
    private bool SymbolsHaveCompatibleParameterLists(ISymbol originalSymbol, ISymbol newSymbol, TExpressionSyntax originalInvocation)
    {
        if (originalSymbol.IsKind(SymbolKind.Method) || originalSymbol.IsIndexer())
        {
            var specifiedArguments = GetArguments(originalInvocation);
            if (!specifiedArguments.IsDefault)
            {
                var symbolParameters = originalSymbol.GetParameters();
                var newSymbolParameters = newSymbol.GetParameters();
                return AreCompatibleParameterLists(specifiedArguments, symbolParameters, newSymbolParameters);
            }
        }
 
        return true;
    }
 
    private bool AreCompatibleParameterLists(
        ImmutableArray<TArgumentSyntax> specifiedArguments,
        ImmutableArray<IParameterSymbol> signature1Parameters,
        ImmutableArray<IParameterSymbol> signature2Parameters)
    {
        Debug.Assert(signature1Parameters.Length == signature2Parameters.Length);
        Debug.Assert(specifiedArguments.Length <= signature1Parameters.Length ||
                    (signature1Parameters.Length > 0 && !signature1Parameters.Last().IsParams));
 
        if (signature1Parameters.Length != signature2Parameters.Length)
        {
            return false;
        }
 
        // If there aren't any parameters, we're OK.
        if (signature1Parameters.Length == 0)
        {
            return true;
        }
 
        // To ensure that the second parameter list is called in the same way as the
        // first, we need to use the specified arguments to bail out if...
        //
        //     * A named argument doesn't have a corresponding parameter in the
        //       in either parameter list, or...
        //
        //     * A named argument matches a parameter that is in a different position
        //       in the two parameter lists.
        //
        // After checking the specified arguments, we walk the unspecified parameters
        // in both parameter lists to ensure that they have matching default values.
 
        var specifiedParameters1 = new List<IParameterSymbol>();
        var specifiedParameters2 = new List<IParameterSymbol>();
 
        for (var i = 0; i < specifiedArguments.Length; i++)
        {
            var argument = specifiedArguments[i];
 
            // Handle named argument
            if (IsNamedArgument(argument))
            {
                var name = GetNamedArgumentIdentifierValueText(argument);
 
                var parameter1 = signature1Parameters.FirstOrDefault(p => p.Name == name);
                RoslynDebug.AssertNotNull(parameter1);
 
                var parameter2 = signature2Parameters.FirstOrDefault(p => p.Name == name);
                if (parameter2 == null)
                {
                    return false;
                }
 
                if (signature1Parameters.IndexOf(parameter1) != signature2Parameters.IndexOf(parameter2))
                {
                    return false;
                }
 
                specifiedParameters1.Add(parameter1);
                specifiedParameters2.Add(parameter2);
            }
            else
            {
                // otherwise, treat the argument positionally, taking care to properly
                // handle params parameters.
                if (i < signature1Parameters.Length)
                {
                    specifiedParameters1.Add(signature1Parameters[i]);
                    specifiedParameters2.Add(signature2Parameters[i]);
                }
            }
        }
 
        // At this point, we can safely assume that specifiedParameters1 and signature2Parameters
        // contain parameters that appear at the same positions in their respective signatures
        // because we bailed out if named arguments referred to parameters at different positions.
        //
        // Now we walk the unspecified parameters to ensure that they have the same default
        // values.
 
        for (var i = 0; i < signature1Parameters.Length; i++)
        {
            var parameter1 = signature1Parameters[i];
            if (specifiedParameters1.Contains(parameter1))
            {
                continue;
            }
 
            var parameter2 = signature2Parameters[i];
 
            Debug.Assert(parameter1.HasExplicitDefaultValue, "Expected all unspecified parameter to have default values");
            Debug.Assert(parameter1.HasExplicitDefaultValue == parameter2.HasExplicitDefaultValue);
 
            if (parameter1.HasExplicitDefaultValue && parameter2.HasExplicitDefaultValue)
            {
                if (!object.Equals(parameter2.ExplicitDefaultValue, parameter1.ExplicitDefaultValue))
                {
                    return false;
                }
 
                if (object.Equals(parameter1.ExplicitDefaultValue, 0.0))
                {
                    RoslynDebug.Assert(object.Equals(parameter2.ExplicitDefaultValue, 0.0));
 
                    var isParam1DefaultValueNegativeZero = double.IsNegativeInfinity(1.0 / (double)parameter1.ExplicitDefaultValue);
                    var isParam2DefaultValueNegativeZero = double.IsNegativeInfinity(1.0 / (double)parameter2.ExplicitDefaultValue);
                    if (isParam1DefaultValueNegativeZero != isParam2DefaultValueNegativeZero)
                    {
                        return false;
                    }
                }
            }
        }
 
        return true;
    }
 
    protected void GetConversions(
        TExpressionSyntax originalExpression,
        ITypeSymbol originalTargetType,
        TExpressionSyntax newExpression,
        ITypeSymbol newTargetType,
        out TConversion? originalConversion,
        out TConversion? newConversion)
    {
        originalConversion = null;
        newConversion = null;
 
        if (this.OriginalSemanticModel.GetTypeInfo(originalExpression).Type != null &&
            this.SpeculativeSemanticModel.GetTypeInfo(newExpression).Type != null)
        {
            originalConversion = ClassifyConversion(this.OriginalSemanticModel, originalExpression, originalTargetType);
            newConversion = ClassifyConversion(this.SpeculativeSemanticModel, newExpression, newTargetType);
        }
        else
        {
            var originalConvertedTypeSymbol = this.OriginalSemanticModel.GetTypeInfo(originalExpression).ConvertedType;
            if (originalConvertedTypeSymbol != null)
            {
                originalConversion = ClassifyConversion(this.OriginalSemanticModel, originalConvertedTypeSymbol, originalTargetType);
            }
 
            var newConvertedTypeSymbol = this.SpeculativeSemanticModel.GetTypeInfo(newExpression).ConvertedType;
            if (newConvertedTypeSymbol != null)
            {
                newConversion = ClassifyConversion(this.SpeculativeSemanticModel, newConvertedTypeSymbol, newTargetType);
            }
        }
    }
}