1 write to Zero
System.Text.RegularExpressions (1)
System\Text\RegularExpressions\Symbolic\BDD.cs (1)
71
Zero
= zero;
22 references to Zero
System.Text.RegularExpressions (22)
System\Text\RegularExpressions\Symbolic\BDD.cs (12)
85
[MemberNotNullWhen(false, nameof(
Zero
))]
90
Debug.Assert((One is null) == (
Zero
is null));
123
if (set.
Zero
.IsEmpty) //the bit must be set to 1
133
set = set.
Zero
;
149
(this == bdd || (Ordinal == bdd.Ordinal && One == bdd.One &&
Zero
== bdd.
Zero
));
223
long v = (((long)node.Ordinal) << ordinal_shift) | (idmap[node.One] << one_node_shift) | (idmap[node.
Zero
] << zero_node_shift);
273
if (visited.Add(node.
Zero
))
274
toVisit.Push(node.
Zero
);
428
bdd = (input & (1 << bdd.Ordinal)) == 0 ? bdd.
Zero
: bdd.One;
494
if (visited.Add(node.
Zero
))
495
toVisit.Push(node.
Zero
);
System\Text\RegularExpressions\Symbolic\BDDRangeConverter.cs (4)
105
if (set.
Zero
.IsEmpty)
123
else if (set.
Zero
.IsFull)
158
(uint, uint)[] rangesL = LiftRanges(b, b - set.
Zero
.Ordinal - 1, ToRangesFromOrdinal(set.
Zero
));
System\Text\RegularExpressions\Symbolic\CharSetSolver.cs (6)
211
_operationCache[key] = result = GetOrCreateBDD(set.Ordinal, Not(set.One), Not(set.
Zero
));
266
two = ApplyBinaryOp(op, set1, set2.
Zero
);
272
two = ApplyBinaryOp(op, set1.
Zero
, set2);
278
two = ApplyBinaryOp(op, set1.
Zero
, set2.
Zero
);
380
BDD zero = ReplaceTrueImpl(bdd.
Zero
, leaf, cache);