96 references to Complex
Microsoft.Gen.Logging.Generated.Tests (1)
LogPropertiesTests.cs (1)
101
P11 = new
Complex
(1.2, 3.4),
Microsoft.ML.TimeSeries (14)
AdaptiveSingularSpectrumSequenceModeler.cs (6)
842
_info.RootsBeforeStabilization = new[] { new
Complex
(_alpha[0], 0) };
852
_info.RootsAfterStabilization = new[] { new
Complex
(_alpha[0], 0) };
917
roots[i] = new
Complex
(roots[i].Real, 0);
1064
roots[i] = new
Complex
(roots[i].Magnitude, 0);
1066
roots[i] = new
Complex
(-roots[i].Magnitude, 0);
1068
roots[i] = new
Complex
(-roots[i].Magnitude, 0);
PolynomialUtils.cs (6)
32
root1 = new
Complex
((-b + sqrtDelta) / 2, 0);
33
root2 = new
Complex
((-b - sqrtDelta) / 2, 0);
37
root1 = new
Complex
(-b / 2, sqrtDelta / 2);
38
root2 = new
Complex
(-b / 2, -sqrtDelta / 2);
97
roots[0] = new
Complex
(-coefficients[i], 0);
127
roots[j] = new
Complex
(realPart[j], imaginaryPart[j]);
SeasonalityDetector.cs (2)
88
var energies = fftRe.Select((m, i) => new
Complex
(m, fftIm[i])).ToArray();
105
var values = ifftRe.Select((t, i) => new
Complex
(t, ifftIm[i])).ToArray();
System.Runtime.Numerics (81)
System\Numerics\Complex.cs (81)
33
public static readonly Complex Zero = new
Complex
(0.0, 0.0);
34
public static readonly Complex One = new
Complex
(1.0, 0.0);
35
public static readonly Complex ImaginaryOne = new
Complex
(0.0, 1.0);
36
public static readonly Complex NaN = new
Complex
(double.NaN, double.NaN);
37
public static readonly Complex Infinity = new
Complex
(double.PositiveInfinity, double.PositiveInfinity);
69
return new
Complex
(magnitude * cos, magnitude * sin);
139
return new
Complex
(-value.m_real, -value.m_imaginary);
144
return new
Complex
(left.m_real + right.m_real, left.m_imaginary + right.m_imaginary);
149
return new
Complex
(left.m_real + right, left.m_imaginary);
154
return new
Complex
(left + right.m_real, right.m_imaginary);
159
return new
Complex
(left.m_real - right.m_real, left.m_imaginary - right.m_imaginary);
164
return new
Complex
(left.m_real - right, left.m_imaginary);
169
return new
Complex
(left - right.m_real, -right.m_imaginary);
177
return new
Complex
(result_realpart, result_imaginarypart);
186
return new
Complex
(double.NaN, double.NaN);
189
return new
Complex
(left.m_real * right, double.NaN);
194
return new
Complex
(double.NaN, left.m_imaginary * right);
197
return new
Complex
(left.m_real * right, left.m_imaginary * right);
206
return new
Complex
(double.NaN, double.NaN);
209
return new
Complex
(left * right.m_real, double.NaN);
214
return new
Complex
(double.NaN, left * right.m_imaginary);
217
return new
Complex
(left * right.m_real, left * right.m_imaginary);
232
return new
Complex
((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc));
237
return new
Complex
((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod));
248
return new
Complex
(double.NaN, double.NaN);
255
return new
Complex
(double.NaN, double.NaN);
258
return new
Complex
(left.m_real / right, double.NaN);
263
return new
Complex
(double.NaN, left.m_imaginary / right);
267
return new
Complex
(left.m_real / right, left.m_imaginary / right);
281
return new
Complex
(a / (c + d * doc), (-a * doc) / (c + d * doc));
286
return new
Complex
(a * cod / (d + c * cod), -a / (d + c * cod));
324
return new
Complex
(value.m_real, -value.m_imaginary);
380
return new
Complex
(sin * Math.Cosh(value.m_imaginary), cos * Math.Sinh(value.m_imaginary));
390
Complex sin = Sin(new
Complex
(-value.m_imaginary, value.m_real));
391
return new
Complex
(sin.m_imaginary, -sin.m_real);
412
return new
Complex
(u, v);
418
return new
Complex
(cos * Math.Cosh(value.m_imaginary), -sin * Math.Sinh(value.m_imaginary));
424
return Cos(new
Complex
(-value.m_imaginary, value.m_real));
445
return new
Complex
(u, v);
466
return new
Complex
(sin / D, Math.Sinh(y2) / D);
471
return new
Complex
(sin / cosh / D, Math.Tanh(y2) / D);
478
Complex tan = Tan(new
Complex
(-value.m_imaginary, value.m_real));
479
return new
Complex
(tan.m_imaginary, -tan.m_real);
484
Complex two = new
Complex
(2.0, 0.0);
614
return new
Complex
(Math.Log(Abs(value)), Math.Atan2(value.m_imaginary, value.m_real));
642
return new
Complex
(double.PositiveInfinity, value.m_imaginary);
644
return new
Complex
(double.NaN, double.NaN);
650
return new
Complex
(double.NaN, double.PositiveInfinity);
654
return new
Complex
(double.PositiveInfinity, double.NaN);
656
return new
Complex
(double.NaN, double.NaN);
664
return new
Complex
(0.0, Math.Sqrt(-value.m_real));
667
return new
Complex
(Math.Sqrt(value.m_real), 0.0);
705
return (new
Complex
(double.PositiveInfinity, imaginaryCopy));
733
return new
Complex
(x, y);
764
return Pow(value, new
Complex
(power, 0));
771
return new
Complex
(realResult, imaginaryResuilt);
780
return new
Complex
((double)value, 0.0);
788
return new
Complex
((double)value, 0.0);
793
return new
Complex
((double)value, 0.0);
802
return new
Complex
((double)value, 0.0);
811
return new
Complex
(value, 0.0);
819
return new
Complex
(value, 0.0);
824
return new
Complex
(value, 0.0);
832
return new
Complex
((double)value, 0.0);
837
return new
Complex
(value, 0.0);
842
return new
Complex
(value, 0.0);
847
return new
Complex
(value, 0.0);
855
return new
Complex
(value, 0.0);
861
return new
Complex
(value, 0.0);
866
return new
Complex
(value, 0.0);
872
return new
Complex
(value, 0.0);
878
return new
Complex
(value, 0.0);
884
return new
Complex
(value, 0.0);
893
return new
Complex
(value, 0.0);
901
static Complex IAdditiveIdentity<Complex, Complex>.AdditiveIdentity => new
Complex
(0.0, 0.0);
922
static Complex IMultiplicativeIdentity<Complex, Complex>.MultiplicativeIdentity => new
Complex
(1.0, 0.0);
929
static Complex INumberBase<Complex>.One => new
Complex
(1.0, 0.0);
935
static Complex INumberBase<Complex>.Zero => new
Complex
(0.0, 0.0);
1454
return new
Complex
(result_realpart, result_imaginarypart);
2144
result = new
Complex
(real, imaginary);
2193
static Complex ISignedNumber<Complex>.NegativeOne => new
Complex
(-1.0, 0.0);