97 references to Complex
Microsoft.Gen.Logging.Generated.Tests (1)
LogPropertiesTests.cs (1)
101P11 = new Complex(1.2, 3.4),
Microsoft.ML.TimeSeries (14)
AdaptiveSingularSpectrumSequenceModeler.cs (6)
842_info.RootsBeforeStabilization = new[] { new Complex(_alpha[0], 0) }; 852_info.RootsAfterStabilization = new[] { new Complex(_alpha[0], 0) }; 917roots[i] = new Complex(roots[i].Real, 0); 1064roots[i] = new Complex(roots[i].Magnitude, 0); 1066roots[i] = new Complex(-roots[i].Magnitude, 0); 1068roots[i] = new Complex(-roots[i].Magnitude, 0);
PolynomialUtils.cs (6)
32root1 = new Complex((-b + sqrtDelta) / 2, 0); 33root2 = new Complex((-b - sqrtDelta) / 2, 0); 37root1 = new Complex(-b / 2, sqrtDelta / 2); 38root2 = new Complex(-b / 2, -sqrtDelta / 2); 97roots[0] = new Complex(-coefficients[i], 0); 127roots[j] = new Complex(realPart[j], imaginaryPart[j]);
SeasonalityDetector.cs (2)
88var energies = fftRe.Select((m, i) => new Complex(m, fftIm[i])).ToArray(); 105var values = ifftRe.Select((t, i) => new Complex(t, ifftIm[i])).ToArray();
System.Runtime.Numerics (82)
System\Numerics\Complex.cs (82)
35public static readonly Complex Zero = new Complex(0.0, 0.0); 36public static readonly Complex One = new Complex(1.0, 0.0); 37public static readonly Complex ImaginaryOne = new Complex(0.0, 1.0); 38public static readonly Complex NaN = new Complex(double.NaN, double.NaN); 39public static readonly Complex Infinity = new Complex(double.PositiveInfinity, double.PositiveInfinity); 71return new Complex(magnitude * cos, magnitude * sin); 141return new Complex(-value.m_real, -value.m_imaginary); 146return new Complex(left.m_real + right.m_real, left.m_imaginary + right.m_imaginary); 151return new Complex(left.m_real + right, left.m_imaginary); 156return new Complex(left + right.m_real, right.m_imaginary); 161return new Complex(left.m_real - right.m_real, left.m_imaginary - right.m_imaginary); 166return new Complex(left.m_real - right, left.m_imaginary); 171return new Complex(left - right.m_real, -right.m_imaginary); 179return new Complex(result_realpart, result_imaginarypart); 188return new Complex(double.NaN, double.NaN); 191return new Complex(left.m_real * right, double.NaN); 196return new Complex(double.NaN, left.m_imaginary * right); 199return new Complex(left.m_real * right, left.m_imaginary * right); 208return new Complex(double.NaN, double.NaN); 211return new Complex(left * right.m_real, double.NaN); 216return new Complex(double.NaN, left * right.m_imaginary); 219return new Complex(left * right.m_real, left * right.m_imaginary); 234return new Complex((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc)); 239return new Complex((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod)); 250return new Complex(double.NaN, double.NaN); 257return new Complex(double.NaN, double.NaN); 260return new Complex(left.m_real / right, double.NaN); 265return new Complex(double.NaN, left.m_imaginary / right); 269return new Complex(left.m_real / right, left.m_imaginary / right); 283return new Complex(a / (c + d * doc), (-a * doc) / (c + d * doc)); 288return new Complex(a * cod / (d + c * cod), -a / (d + c * cod)); 326return new Complex(value.m_real, -value.m_imaginary); 382return new Complex(sin * Math.Cosh(value.m_imaginary), cos * Math.Sinh(value.m_imaginary)); 392Complex sin = Sin(new Complex(-value.m_imaginary, value.m_real)); 393return new Complex(sin.m_imaginary, -sin.m_real); 414return new Complex(u, v); 420return new Complex(cos * Math.Cosh(value.m_imaginary), -sin * Math.Sinh(value.m_imaginary)); 426return Cos(new Complex(-value.m_imaginary, value.m_real)); 447return new Complex(u, v); 468return new Complex(sin / D, Math.Sinh(y2) / D); 473return new Complex(sin / cosh / D, Math.Tanh(y2) / D); 480Complex tan = Tan(new Complex(-value.m_imaginary, value.m_real)); 481return new Complex(tan.m_imaginary, -tan.m_real); 486Complex two = new Complex(2.0, 0.0); 616return new Complex(Math.Log(Abs(value)), Math.Atan2(value.m_imaginary, value.m_real)); 644return new Complex(double.PositiveInfinity, value.m_imaginary); 646return new Complex(double.NaN, double.NaN); 652return new Complex(double.NaN, double.PositiveInfinity); 656return new Complex(double.PositiveInfinity, double.NaN); 658return new Complex(double.NaN, double.NaN); 666return new Complex(0.0, Math.Sqrt(-value.m_real)); 669return new Complex(Math.Sqrt(value.m_real), 0.0); 707return (new Complex(double.PositiveInfinity, imaginaryCopy)); 735return new Complex(x, y); 766return Pow(value, new Complex(power, 0)); 773return new Complex(realResult, imaginaryResuilt); 782return new Complex((double)value, 0.0); 790return new Complex((double)value, 0.0); 795return new Complex((double)value, 0.0); 804return new Complex((double)value, 0.0); 813return new Complex(value, 0.0); 821return new Complex(value, 0.0); 826return new Complex(value, 0.0); 834return new Complex((double)value, 0.0); 842return new Complex((double)value, 0.0); 847return new Complex(value, 0.0); 852return new Complex(value, 0.0); 857return new Complex(value, 0.0); 865return new Complex(value, 0.0); 871return new Complex(value, 0.0); 876return new Complex(value, 0.0); 882return new Complex(value, 0.0); 888return new Complex(value, 0.0); 894return new Complex(value, 0.0); 903return new Complex(value, 0.0); 911static Complex IAdditiveIdentity<Complex, Complex>.AdditiveIdentity => new Complex(0.0, 0.0); 932static Complex IMultiplicativeIdentity<Complex, Complex>.MultiplicativeIdentity => new Complex(1.0, 0.0); 939static Complex INumberBase<Complex>.One => new Complex(1.0, 0.0); 945static Complex INumberBase<Complex>.Zero => new Complex(0.0, 0.0); 1464return new Complex(result_realpart, result_imaginarypart); 2207result = new Complex(real, imaginary); 2256static Complex ISignedNumber<Complex>.NegativeOne => new Complex(-1.0, 0.0);