97 references to Complex
Microsoft.Gen.Logging.Generated.Tests (1)
LogPropertiesTests.cs (1)
101
P11 = new
Complex
(1.2, 3.4),
Microsoft.ML.TimeSeries (14)
AdaptiveSingularSpectrumSequenceModeler.cs (6)
842
_info.RootsBeforeStabilization = new[] { new
Complex
(_alpha[0], 0) };
852
_info.RootsAfterStabilization = new[] { new
Complex
(_alpha[0], 0) };
917
roots[i] = new
Complex
(roots[i].Real, 0);
1064
roots[i] = new
Complex
(roots[i].Magnitude, 0);
1066
roots[i] = new
Complex
(-roots[i].Magnitude, 0);
1068
roots[i] = new
Complex
(-roots[i].Magnitude, 0);
PolynomialUtils.cs (6)
32
root1 = new
Complex
((-b + sqrtDelta) / 2, 0);
33
root2 = new
Complex
((-b - sqrtDelta) / 2, 0);
37
root1 = new
Complex
(-b / 2, sqrtDelta / 2);
38
root2 = new
Complex
(-b / 2, -sqrtDelta / 2);
97
roots[0] = new
Complex
(-coefficients[i], 0);
127
roots[j] = new
Complex
(realPart[j], imaginaryPart[j]);
SeasonalityDetector.cs (2)
88
var energies = fftRe.Select((m, i) => new
Complex
(m, fftIm[i])).ToArray();
105
var values = ifftRe.Select((t, i) => new
Complex
(t, ifftIm[i])).ToArray();
System.Runtime.Numerics (82)
System\Numerics\Complex.cs (82)
35
public static readonly Complex Zero = new
Complex
(0.0, 0.0);
36
public static readonly Complex One = new
Complex
(1.0, 0.0);
37
public static readonly Complex ImaginaryOne = new
Complex
(0.0, 1.0);
38
public static readonly Complex NaN = new
Complex
(double.NaN, double.NaN);
39
public static readonly Complex Infinity = new
Complex
(double.PositiveInfinity, double.PositiveInfinity);
71
return new
Complex
(magnitude * cos, magnitude * sin);
141
return new
Complex
(-value.m_real, -value.m_imaginary);
146
return new
Complex
(left.m_real + right.m_real, left.m_imaginary + right.m_imaginary);
151
return new
Complex
(left.m_real + right, left.m_imaginary);
156
return new
Complex
(left + right.m_real, right.m_imaginary);
161
return new
Complex
(left.m_real - right.m_real, left.m_imaginary - right.m_imaginary);
166
return new
Complex
(left.m_real - right, left.m_imaginary);
171
return new
Complex
(left - right.m_real, -right.m_imaginary);
179
return new
Complex
(result_realpart, result_imaginarypart);
188
return new
Complex
(double.NaN, double.NaN);
191
return new
Complex
(left.m_real * right, double.NaN);
196
return new
Complex
(double.NaN, left.m_imaginary * right);
199
return new
Complex
(left.m_real * right, left.m_imaginary * right);
208
return new
Complex
(double.NaN, double.NaN);
211
return new
Complex
(left * right.m_real, double.NaN);
216
return new
Complex
(double.NaN, left * right.m_imaginary);
219
return new
Complex
(left * right.m_real, left * right.m_imaginary);
234
return new
Complex
((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc));
239
return new
Complex
((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod));
250
return new
Complex
(double.NaN, double.NaN);
257
return new
Complex
(double.NaN, double.NaN);
260
return new
Complex
(left.m_real / right, double.NaN);
265
return new
Complex
(double.NaN, left.m_imaginary / right);
269
return new
Complex
(left.m_real / right, left.m_imaginary / right);
283
return new
Complex
(a / (c + d * doc), (-a * doc) / (c + d * doc));
288
return new
Complex
(a * cod / (d + c * cod), -a / (d + c * cod));
326
return new
Complex
(value.m_real, -value.m_imaginary);
382
return new
Complex
(sin * Math.Cosh(value.m_imaginary), cos * Math.Sinh(value.m_imaginary));
392
Complex sin = Sin(new
Complex
(-value.m_imaginary, value.m_real));
393
return new
Complex
(sin.m_imaginary, -sin.m_real);
414
return new
Complex
(u, v);
420
return new
Complex
(cos * Math.Cosh(value.m_imaginary), -sin * Math.Sinh(value.m_imaginary));
426
return Cos(new
Complex
(-value.m_imaginary, value.m_real));
447
return new
Complex
(u, v);
468
return new
Complex
(sin / D, Math.Sinh(y2) / D);
473
return new
Complex
(sin / cosh / D, Math.Tanh(y2) / D);
480
Complex tan = Tan(new
Complex
(-value.m_imaginary, value.m_real));
481
return new
Complex
(tan.m_imaginary, -tan.m_real);
486
Complex two = new
Complex
(2.0, 0.0);
616
return new
Complex
(Math.Log(Abs(value)), Math.Atan2(value.m_imaginary, value.m_real));
644
return new
Complex
(double.PositiveInfinity, value.m_imaginary);
646
return new
Complex
(double.NaN, double.NaN);
652
return new
Complex
(double.NaN, double.PositiveInfinity);
656
return new
Complex
(double.PositiveInfinity, double.NaN);
658
return new
Complex
(double.NaN, double.NaN);
666
return new
Complex
(0.0, Math.Sqrt(-value.m_real));
669
return new
Complex
(Math.Sqrt(value.m_real), 0.0);
707
return (new
Complex
(double.PositiveInfinity, imaginaryCopy));
735
return new
Complex
(x, y);
766
return Pow(value, new
Complex
(power, 0));
773
return new
Complex
(realResult, imaginaryResuilt);
782
return new
Complex
((double)value, 0.0);
790
return new
Complex
((double)value, 0.0);
795
return new
Complex
((double)value, 0.0);
804
return new
Complex
((double)value, 0.0);
813
return new
Complex
(value, 0.0);
821
return new
Complex
(value, 0.0);
826
return new
Complex
(value, 0.0);
834
return new
Complex
((double)value, 0.0);
842
return new
Complex
((double)value, 0.0);
847
return new
Complex
(value, 0.0);
852
return new
Complex
(value, 0.0);
857
return new
Complex
(value, 0.0);
865
return new
Complex
(value, 0.0);
871
return new
Complex
(value, 0.0);
876
return new
Complex
(value, 0.0);
882
return new
Complex
(value, 0.0);
888
return new
Complex
(value, 0.0);
894
return new
Complex
(value, 0.0);
903
return new
Complex
(value, 0.0);
911
static Complex IAdditiveIdentity<Complex, Complex>.AdditiveIdentity => new
Complex
(0.0, 0.0);
932
static Complex IMultiplicativeIdentity<Complex, Complex>.MultiplicativeIdentity => new
Complex
(1.0, 0.0);
939
static Complex INumberBase<Complex>.One => new
Complex
(1.0, 0.0);
945
static Complex INumberBase<Complex>.Zero => new
Complex
(0.0, 0.0);
1464
return new
Complex
(result_realpart, result_imaginarypart);
2207
result = new
Complex
(real, imaginary);
2256
static Complex ISignedNumber<Complex>.NegativeOne => new
Complex
(-1.0, 0.0);