96 references to Complex
Microsoft.Gen.Logging.Generated.Tests (1)
LogPropertiesTests.cs (1)
101P11 = new Complex(1.2, 3.4),
Microsoft.ML.TimeSeries (14)
AdaptiveSingularSpectrumSequenceModeler.cs (6)
842_info.RootsBeforeStabilization = new[] { new Complex(_alpha[0], 0) }; 852_info.RootsAfterStabilization = new[] { new Complex(_alpha[0], 0) }; 917roots[i] = new Complex(roots[i].Real, 0); 1064roots[i] = new Complex(roots[i].Magnitude, 0); 1066roots[i] = new Complex(-roots[i].Magnitude, 0); 1068roots[i] = new Complex(-roots[i].Magnitude, 0);
PolynomialUtils.cs (6)
32root1 = new Complex((-b + sqrtDelta) / 2, 0); 33root2 = new Complex((-b - sqrtDelta) / 2, 0); 37root1 = new Complex(-b / 2, sqrtDelta / 2); 38root2 = new Complex(-b / 2, -sqrtDelta / 2); 97roots[0] = new Complex(-coefficients[i], 0); 127roots[j] = new Complex(realPart[j], imaginaryPart[j]);
SeasonalityDetector.cs (2)
88var energies = fftRe.Select((m, i) => new Complex(m, fftIm[i])).ToArray(); 105var values = ifftRe.Select((t, i) => new Complex(t, ifftIm[i])).ToArray();
System.Runtime.Numerics (81)
System\Numerics\Complex.cs (81)
33public static readonly Complex Zero = new Complex(0.0, 0.0); 34public static readonly Complex One = new Complex(1.0, 0.0); 35public static readonly Complex ImaginaryOne = new Complex(0.0, 1.0); 36public static readonly Complex NaN = new Complex(double.NaN, double.NaN); 37public static readonly Complex Infinity = new Complex(double.PositiveInfinity, double.PositiveInfinity); 69return new Complex(magnitude * cos, magnitude * sin); 139return new Complex(-value.m_real, -value.m_imaginary); 144return new Complex(left.m_real + right.m_real, left.m_imaginary + right.m_imaginary); 149return new Complex(left.m_real + right, left.m_imaginary); 154return new Complex(left + right.m_real, right.m_imaginary); 159return new Complex(left.m_real - right.m_real, left.m_imaginary - right.m_imaginary); 164return new Complex(left.m_real - right, left.m_imaginary); 169return new Complex(left - right.m_real, -right.m_imaginary); 177return new Complex(result_realpart, result_imaginarypart); 186return new Complex(double.NaN, double.NaN); 189return new Complex(left.m_real * right, double.NaN); 194return new Complex(double.NaN, left.m_imaginary * right); 197return new Complex(left.m_real * right, left.m_imaginary * right); 206return new Complex(double.NaN, double.NaN); 209return new Complex(left * right.m_real, double.NaN); 214return new Complex(double.NaN, left * right.m_imaginary); 217return new Complex(left * right.m_real, left * right.m_imaginary); 232return new Complex((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc)); 237return new Complex((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod)); 248return new Complex(double.NaN, double.NaN); 255return new Complex(double.NaN, double.NaN); 258return new Complex(left.m_real / right, double.NaN); 263return new Complex(double.NaN, left.m_imaginary / right); 267return new Complex(left.m_real / right, left.m_imaginary / right); 281return new Complex(a / (c + d * doc), (-a * doc) / (c + d * doc)); 286return new Complex(a * cod / (d + c * cod), -a / (d + c * cod)); 324return new Complex(value.m_real, -value.m_imaginary); 380return new Complex(sin * Math.Cosh(value.m_imaginary), cos * Math.Sinh(value.m_imaginary)); 390Complex sin = Sin(new Complex(-value.m_imaginary, value.m_real)); 391return new Complex(sin.m_imaginary, -sin.m_real); 412return new Complex(u, v); 418return new Complex(cos * Math.Cosh(value.m_imaginary), -sin * Math.Sinh(value.m_imaginary)); 424return Cos(new Complex(-value.m_imaginary, value.m_real)); 445return new Complex(u, v); 466return new Complex(sin / D, Math.Sinh(y2) / D); 471return new Complex(sin / cosh / D, Math.Tanh(y2) / D); 478Complex tan = Tan(new Complex(-value.m_imaginary, value.m_real)); 479return new Complex(tan.m_imaginary, -tan.m_real); 484Complex two = new Complex(2.0, 0.0); 614return new Complex(Math.Log(Abs(value)), Math.Atan2(value.m_imaginary, value.m_real)); 642return new Complex(double.PositiveInfinity, value.m_imaginary); 644return new Complex(double.NaN, double.NaN); 650return new Complex(double.NaN, double.PositiveInfinity); 654return new Complex(double.PositiveInfinity, double.NaN); 656return new Complex(double.NaN, double.NaN); 664return new Complex(0.0, Math.Sqrt(-value.m_real)); 667return new Complex(Math.Sqrt(value.m_real), 0.0); 705return (new Complex(double.PositiveInfinity, imaginaryCopy)); 733return new Complex(x, y); 764return Pow(value, new Complex(power, 0)); 771return new Complex(realResult, imaginaryResuilt); 780return new Complex((double)value, 0.0); 788return new Complex((double)value, 0.0); 793return new Complex((double)value, 0.0); 802return new Complex((double)value, 0.0); 811return new Complex(value, 0.0); 819return new Complex(value, 0.0); 824return new Complex(value, 0.0); 832return new Complex((double)value, 0.0); 837return new Complex(value, 0.0); 842return new Complex(value, 0.0); 847return new Complex(value, 0.0); 855return new Complex(value, 0.0); 861return new Complex(value, 0.0); 866return new Complex(value, 0.0); 872return new Complex(value, 0.0); 878return new Complex(value, 0.0); 884return new Complex(value, 0.0); 893return new Complex(value, 0.0); 901static Complex IAdditiveIdentity<Complex, Complex>.AdditiveIdentity => new Complex(0.0, 0.0); 922static Complex IMultiplicativeIdentity<Complex, Complex>.MultiplicativeIdentity => new Complex(1.0, 0.0); 929static Complex INumberBase<Complex>.One => new Complex(1.0, 0.0); 935static Complex INumberBase<Complex>.Zero => new Complex(0.0, 0.0); 1454return new Complex(result_realpart, result_imaginarypart); 2144result = new Complex(real, imaginary); 2193static Complex ISignedNumber<Complex>.NegativeOne => new Complex(-1.0, 0.0);