|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// Description: Grid implementation.
//
// Specs
// Grid : Grid.mht
// Size Sharing: Size Information Sharing.doc
//
// Misc
// Grid Tutorial: Grid Tutorial.mht
//
using MS.Internal;
using MS.Internal.Controls;
using MS.Internal.PresentationFramework;
using MS.Internal.Telemetry.PresentationFramework;
using System.Collections;
using System.ComponentModel;
using System.Threading;
using System.Windows.Media;
using System.Windows.Markup;
namespace System.Windows.Controls
{
/// <summary>
/// Grid
/// </summary>
public class Grid : Panel, IAddChild
{
//------------------------------------------------------
//
// Constructors
//
//------------------------------------------------------
#region Constructors
static Grid()
{
ControlsTraceLogger.AddControl(TelemetryControls.Grid);
}
/// <summary>
/// Default constructor.
/// </summary>
public Grid()
{
SetFlags((bool) ShowGridLinesProperty.GetDefaultValue(DependencyObjectType), Flags.ShowGridLinesPropertyValue);
}
#endregion Constructors
//------------------------------------------------------
//
// Public Methods
//
//------------------------------------------------------
#region Public Methods
/// <summary>
/// <see cref="IAddChild.AddChild"/>
/// </summary>
void IAddChild.AddChild(object value)
{
ArgumentNullException.ThrowIfNull(value);
UIElement cell = value as UIElement;
if (cell != null)
{
Children.Add(cell);
return;
}
throw (new ArgumentException(SR.Format(SR.Grid_UnexpectedParameterType, value.GetType(), typeof(UIElement)), "value"));
}
/// <summary>
/// <see cref="IAddChild.AddText"/>
/// </summary>
void IAddChild.AddText(string text)
{
XamlSerializerUtil.ThrowIfNonWhiteSpaceInAddText(text, this);
}
/// <summary>
/// <see cref="FrameworkElement.LogicalChildren"/>
/// </summary>
protected internal override IEnumerator LogicalChildren
{
get
{
// empty panel or a panel being used as the items
// host has *no* logical children; give empty enumerator
bool noChildren = (base.VisualChildrenCount == 0) || IsItemsHost;
if (noChildren)
{
ExtendedData extData = ExtData;
if ( extData == null
|| ( (extData.ColumnDefinitions == null || extData.ColumnDefinitions.Count == 0)
&& (extData.RowDefinitions == null || extData.RowDefinitions.Count == 0) )
)
{
// grid is empty
return EmptyEnumerator.Instance;
}
}
return (new GridChildrenCollectionEnumeratorSimple(this, !noChildren));
}
}
/// <summary>
/// Helper for setting Column property on a UIElement.
/// </summary>
/// <param name="element">UIElement to set Column property on.</param>
/// <param name="value">Column property value.</param>
public static void SetColumn(UIElement element, int value)
{
ArgumentNullException.ThrowIfNull(element);
element.SetValue(ColumnProperty, value);
}
/// <summary>
/// Helper for reading Column property from a UIElement.
/// </summary>
/// <param name="element">UIElement to read Column property from.</param>
/// <returns>Column property value.</returns>
[AttachedPropertyBrowsableForChildren()]
public static int GetColumn(UIElement element)
{
ArgumentNullException.ThrowIfNull(element);
return ((int)element.GetValue(ColumnProperty));
}
/// <summary>
/// Helper for setting Row property on a UIElement.
/// </summary>
/// <param name="element">UIElement to set Row property on.</param>
/// <param name="value">Row property value.</param>
public static void SetRow(UIElement element, int value)
{
ArgumentNullException.ThrowIfNull(element);
element.SetValue(RowProperty, value);
}
/// <summary>
/// Helper for reading Row property from a UIElement.
/// </summary>
/// <param name="element">UIElement to read Row property from.</param>
/// <returns>Row property value.</returns>
[AttachedPropertyBrowsableForChildren()]
public static int GetRow(UIElement element)
{
ArgumentNullException.ThrowIfNull(element);
return ((int)element.GetValue(RowProperty));
}
/// <summary>
/// Helper for setting ColumnSpan property on a UIElement.
/// </summary>
/// <param name="element">UIElement to set ColumnSpan property on.</param>
/// <param name="value">ColumnSpan property value.</param>
public static void SetColumnSpan(UIElement element, int value)
{
ArgumentNullException.ThrowIfNull(element);
element.SetValue(ColumnSpanProperty, value);
}
/// <summary>
/// Helper for reading ColumnSpan property from a UIElement.
/// </summary>
/// <param name="element">UIElement to read ColumnSpan property from.</param>
/// <returns>ColumnSpan property value.</returns>
[AttachedPropertyBrowsableForChildren()]
public static int GetColumnSpan(UIElement element)
{
ArgumentNullException.ThrowIfNull(element);
return ((int)element.GetValue(ColumnSpanProperty));
}
/// <summary>
/// Helper for setting RowSpan property on a UIElement.
/// </summary>
/// <param name="element">UIElement to set RowSpan property on.</param>
/// <param name="value">RowSpan property value.</param>
public static void SetRowSpan(UIElement element, int value)
{
ArgumentNullException.ThrowIfNull(element);
element.SetValue(RowSpanProperty, value);
}
/// <summary>
/// Helper for reading RowSpan property from a UIElement.
/// </summary>
/// <param name="element">UIElement to read RowSpan property from.</param>
/// <returns>RowSpan property value.</returns>
[AttachedPropertyBrowsableForChildren()]
public static int GetRowSpan(UIElement element)
{
ArgumentNullException.ThrowIfNull(element);
return ((int)element.GetValue(RowSpanProperty));
}
/// <summary>
/// Helper for setting IsSharedSizeScope property on a UIElement.
/// </summary>
/// <param name="element">UIElement to set IsSharedSizeScope property on.</param>
/// <param name="value">IsSharedSizeScope property value.</param>
public static void SetIsSharedSizeScope(UIElement element, bool value)
{
ArgumentNullException.ThrowIfNull(element);
element.SetValue(IsSharedSizeScopeProperty, value);
}
/// <summary>
/// Helper for reading IsSharedSizeScope property from a UIElement.
/// </summary>
/// <param name="element">UIElement to read IsSharedSizeScope property from.</param>
/// <returns>IsSharedSizeScope property value.</returns>
public static bool GetIsSharedSizeScope(UIElement element)
{
ArgumentNullException.ThrowIfNull(element);
return ((bool)element.GetValue(IsSharedSizeScopeProperty));
}
#endregion Public Methods
//------------------------------------------------------
//
// Public Properties
//
//------------------------------------------------------
#region Public Properties
/// <summary>
/// ShowGridLines property.
/// </summary>
public bool ShowGridLines
{
get { return (CheckFlagsAnd(Flags.ShowGridLinesPropertyValue)); }
set { SetValue(ShowGridLinesProperty, value); }
}
/// <summary>
/// Returns a ColumnDefinitionCollection of column definitions.
/// </summary>
[DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
public ColumnDefinitionCollection ColumnDefinitions
{
get
{
if (_data == null) { _data = new ExtendedData(); }
if (_data.ColumnDefinitions == null) { _data.ColumnDefinitions = new ColumnDefinitionCollection(this); }
return (_data.ColumnDefinitions);
}
}
/// <summary>
/// Returns a RowDefinitionCollection of row definitions.
/// </summary>
[DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
public RowDefinitionCollection RowDefinitions
{
get
{
if (_data == null) { _data = new ExtendedData(); }
if (_data.RowDefinitions == null) { _data.RowDefinitions = new RowDefinitionCollection(this); }
return (_data.RowDefinitions);
}
}
#endregion Public Properties
//------------------------------------------------------
//
// Protected Methods
//
//------------------------------------------------------
#region Protected Methods
/// <summary>
/// Derived class must implement to support Visual children. The method must return
/// the child at the specified index. Index must be between 0 and GetVisualChildrenCount-1.
///
/// By default a Visual does not have any children.
///
/// Remark:
/// During this virtual call it is not valid to modify the Visual tree.
/// </summary>
protected override Visual GetVisualChild(int index)
{
// because "base.Count + 1" for GridLinesRenderer
// argument checking done at the base class
if(index == base.VisualChildrenCount)
{
if (_gridLinesRenderer == null)
{
throw new ArgumentOutOfRangeException("index", index, SR.Visual_ArgumentOutOfRange);
}
return _gridLinesRenderer;
}
else return base.GetVisualChild(index);
}
/// <summary>
/// Derived classes override this property to enable the Visual code to enumerate
/// the Visual children. Derived classes need to return the number of children
/// from this method.
///
/// By default a Visual does not have any children.
///
/// Remark: During this virtual method the Visual tree must not be modified.
/// </summary>
protected override int VisualChildrenCount
{
//since GridLinesRenderer has not been added as a child, so we do not subtract
get { return base.VisualChildrenCount + (_gridLinesRenderer != null ? 1 : 0); }
}
/// <summary>
/// Content measurement.
/// </summary>
/// <param name="constraint">Constraint</param>
/// <returns>Desired size</returns>
protected override Size MeasureOverride(Size constraint)
{
Size gridDesiredSize;
ExtendedData extData = ExtData;
try
{
EnterCounterScope(Counters.MeasureOverride);
ListenToNotifications = true;
MeasureOverrideInProgress = true;
if (extData == null)
{
gridDesiredSize = new Size();
UIElementCollection children = InternalChildren;
for (int i = 0, count = children.Count; i < count; ++i)
{
UIElement child = children[i];
if (child != null)
{
child.Measure(constraint);
gridDesiredSize.Width = Math.Max(gridDesiredSize.Width, child.DesiredSize.Width);
gridDesiredSize.Height = Math.Max(gridDesiredSize.Height, child.DesiredSize.Height);
}
}
}
else
{
{
bool sizeToContentU = double.IsPositiveInfinity(constraint.Width);
bool sizeToContentV = double.IsPositiveInfinity(constraint.Height);
// Clear index information and rounding errors
if (RowDefinitionCollectionDirty || ColumnDefinitionCollectionDirty)
{
if (_definitionIndices != null)
{
Array.Clear(_definitionIndices, 0, _definitionIndices.Length);
_definitionIndices = null;
}
if (UseLayoutRounding)
{
if (_roundingErrors != null)
{
Array.Clear(_roundingErrors, 0, _roundingErrors.Length);
_roundingErrors = null;
}
}
}
ValidateDefinitionsUStructure();
ValidateDefinitionsLayout(DefinitionsU, sizeToContentU);
ValidateDefinitionsVStructure();
ValidateDefinitionsLayout(DefinitionsV, sizeToContentV);
CellsStructureDirty |= (SizeToContentU != sizeToContentU) || (SizeToContentV != sizeToContentV);
SizeToContentU = sizeToContentU;
SizeToContentV = sizeToContentV;
}
ValidateCells();
Debug.Assert(DefinitionsU.Length > 0 && DefinitionsV.Length > 0);
// Grid classifies cells into four groups depending on
// the column / row type a cell belongs to (number corresponds to
// group number):
//
// Px Auto Star
// +--------+--------+--------+
// | | | |
// Px | 1 | 1 | 3 |
// | | | |
// +--------+--------+--------+
// | | | |
// Auto | 1 | 1 | 3 |
// | | | |
// +--------+--------+--------+
// | | | |
// Star | 4 | 2 | 4 |
// | | | |
// +--------+--------+--------+
//
// The group number indicates the order in which cells are measured.
// Certain order is necessary to be able to dynamically resolve star
// columns / rows sizes which are used as input for measuring of
// the cells belonging to them.
//
// However, there are cases when topology of a grid causes cyclical
// size dependences. For example:
//
//
// column width="Auto" column width="*"
// +----------------------+----------------------+
// | | |
// | | |
// | | |
// | | |
// row height="Auto" | | cell 1 2 |
// | | |
// | | |
// | | |
// | | |
// +----------------------+----------------------+
// | | |
// | | |
// | | |
// | | |
// row height="*" | cell 2 1 | |
// | | |
// | | |
// | | |
// | | |
// +----------------------+----------------------+
//
// In order to accurately calculate constraint width for "cell 1 2"
// (which is the remaining of grid's available width and calculated
// value of Auto column), "cell 2 1" needs to be calculated first,
// as it contributes to the Auto column's calculated value.
// At the same time in order to accurately calculate constraint
// height for "cell 2 1", "cell 1 2" needs to be calcualted first,
// as it contributes to Auto row height, which is used in the
// computation of Star row resolved height.
//
// to "break" this cyclical dependency we are making (arbitrary)
// decision to treat cells like "cell 2 1" as if they appear in Auto
// rows. And then recalculate them one more time when star row
// heights are resolved.
//
// (Or more strictly) the code below implement the following logic:
//
// +---------+
// | enter |
// +---------+
// |
// V
// +----------------+
// | Measure Group1 |
// +----------------+
// |
// V
// / - \
// / \
// Y / Can \ N
// +--------| Resolve |-----------+
// | \ StarsV? / |
// | \ / |
// | \ - / |
// V V
// +----------------+ / - \
// | Resolve StarsV | / \
// +----------------+ Y / Can \ N
// | +----| Resolve |------+
// V | \ StarsU? / |
// +----------------+ | \ / |
// | Measure Group2 | | \ - / |
// +----------------+ | V
// | | +-----------------+
// V | | Measure Group2' |
// +----------------+ | +-----------------+
// | Resolve StarsU | | |
// +----------------+ V V
// | +----------------+ +----------------+
// V | Resolve StarsU | | Resolve StarsU |
// +----------------+ +----------------+ +----------------+
// | Measure Group3 | | |
// +----------------+ V V
// | +----------------+ +----------------+
// | | Measure Group3 | | Measure Group3 |
// | +----------------+ +----------------+
// | | |
// | V V
// | +----------------+ +----------------+
// | | Resolve StarsV | | Resolve StarsV |
// | +----------------+ +----------------+
// | | |
// | | V
// | | +------------------+
// | | | Measure Group2'' |
// | | +------------------+
// | | |
// +----------------------+-------------------------+
// |
// V
// +----------------+
// | Measure Group4 |
// +----------------+
// |
// V
// +--------+
// | exit |
// +--------+
//
// where:
// * all [Measure GroupN] - regular children measure process -
// each cell is measured given contraint size as an input
// and each cell's desired size is accumulated on the
// corresponding column / row;
// * [Measure Group2'] - is when each cell is measured with
// infinit height as a constraint and a cell's desired
// height is ignored;
// * [Measure Groups''] - is when each cell is measured (second
// time during single Grid.MeasureOverride) regularly but its
// returned width is ignored;
//
// This algorithm is believed to be as close to ideal as possible.
// It has the following drawbacks:
// * cells belonging to Group2 can be called to measure twice;
// * iff during second measure a cell belonging to Group2 returns
// desired width greater than desired width returned the first
// time, such a cell is going to be clipped, even though it
// appears in Auto column.
//
MeasureCellsGroup(extData.CellGroup1, constraint, false, false);
{
// after Group1 is measured, only Group3 may have cells belonging to Auto rows.
bool canResolveStarsV = !HasGroup3CellsInAutoRows;
if (canResolveStarsV)
{
if (HasStarCellsV) { ResolveStar(DefinitionsV, constraint.Height); }
MeasureCellsGroup(extData.CellGroup2, constraint, false, false);
if (HasStarCellsU) { ResolveStar(DefinitionsU, constraint.Width); }
MeasureCellsGroup(extData.CellGroup3, constraint, false, false);
}
else
{
// if at least one cell exists in Group2, it must be measured before
// StarsU can be resolved.
bool canResolveStarsU = extData.CellGroup2 > PrivateCells.Length;
if (canResolveStarsU)
{
if (HasStarCellsU) { ResolveStar(DefinitionsU, constraint.Width); }
MeasureCellsGroup(extData.CellGroup3, constraint, false, false);
if (HasStarCellsV) { ResolveStar(DefinitionsV, constraint.Height); }
}
else
{
// This is a revision to the algorithm employed for the cyclic
// dependency case described above. We now repeatedly
// measure Group3 and Group2 until their sizes settle. We
// also use a count heuristic to break a loop in case of one.
bool hasDesiredSizeUChanged = false;
int cnt=0;
// Cache Group2MinWidths & Group3MinHeights
double[] group2MinSizes = CacheMinSizes(extData.CellGroup2, false);
double[] group3MinSizes = CacheMinSizes(extData.CellGroup3, true);
MeasureCellsGroup(extData.CellGroup2, constraint, false, true);
do
{
if (hasDesiredSizeUChanged)
{
// Reset cached Group3Heights
ApplyCachedMinSizes(group3MinSizes, true);
}
if (HasStarCellsU) { ResolveStar(DefinitionsU, constraint.Width); }
MeasureCellsGroup(extData.CellGroup3, constraint, false, false);
// Reset cached Group2Widths
ApplyCachedMinSizes(group2MinSizes, false);
if (HasStarCellsV) { ResolveStar(DefinitionsV, constraint.Height); }
MeasureCellsGroup(extData.CellGroup2, constraint, cnt == c_layoutLoopMaxCount, false, out hasDesiredSizeUChanged);
}
while (hasDesiredSizeUChanged && ++cnt <= c_layoutLoopMaxCount);
}
}
}
MeasureCellsGroup(extData.CellGroup4, constraint, false, false);
EnterCounter(Counters._CalculateDesiredSize);
gridDesiredSize = new Size(
CalculateDesiredSize(DefinitionsU),
CalculateDesiredSize(DefinitionsV));
ExitCounter(Counters._CalculateDesiredSize);
}
}
finally
{
MeasureOverrideInProgress = false;
ExitCounterScope(Counters.MeasureOverride);
}
return (gridDesiredSize);
}
/// <summary>
/// Content arrangement.
/// </summary>
/// <param name="arrangeSize">Arrange size</param>
protected override Size ArrangeOverride(Size arrangeSize)
{
try
{
EnterCounterScope(Counters.ArrangeOverride);
ArrangeOverrideInProgress = true;
if (_data == null)
{
UIElementCollection children = InternalChildren;
for (int i = 0, count = children.Count; i < count; ++i)
{
UIElement child = children[i];
if (child != null)
{
child.Arrange(new Rect(arrangeSize));
}
}
}
else
{
Debug.Assert(DefinitionsU.Length > 0 && DefinitionsV.Length > 0);
EnterCounter(Counters._SetFinalSize);
SetFinalSize(DefinitionsU, arrangeSize.Width, true);
SetFinalSize(DefinitionsV, arrangeSize.Height, false);
ExitCounter(Counters._SetFinalSize);
UIElementCollection children = InternalChildren;
for (int currentCell = 0; currentCell < PrivateCells.Length; ++currentCell)
{
UIElement cell = children[currentCell];
if (cell == null)
{
continue;
}
int columnIndex = PrivateCells[currentCell].ColumnIndex;
int rowIndex = PrivateCells[currentCell].RowIndex;
int columnSpan = PrivateCells[currentCell].ColumnSpan;
int rowSpan = PrivateCells[currentCell].RowSpan;
Rect cellRect = new Rect(
columnIndex == 0 ? 0.0 : DefinitionsU[columnIndex].FinalOffset,
rowIndex == 0 ? 0.0 : DefinitionsV[rowIndex].FinalOffset,
GetFinalSizeForRange(DefinitionsU, columnIndex, columnSpan),
GetFinalSizeForRange(DefinitionsV, rowIndex, rowSpan) );
EnterCounter(Counters._ArrangeChildHelper2);
cell.Arrange(cellRect);
ExitCounter(Counters._ArrangeChildHelper2);
}
// update render bound on grid lines renderer visual
GridLinesRenderer gridLinesRenderer = EnsureGridLinesRenderer();
if (gridLinesRenderer != null)
{
gridLinesRenderer.UpdateRenderBounds(arrangeSize);
}
}
}
finally
{
SetValid();
ArrangeOverrideInProgress = false;
ExitCounterScope(Counters.ArrangeOverride);
}
return (arrangeSize);
}
/// <summary>
/// <see cref="Visual.OnVisualChildrenChanged"/>
/// </summary>
protected internal override void OnVisualChildrenChanged(
DependencyObject visualAdded,
DependencyObject visualRemoved)
{
CellsStructureDirty = true;
base.OnVisualChildrenChanged(visualAdded, visualRemoved);
}
#endregion Protected Methods
//------------------------------------------------------
//
// Internal Methods
//
//------------------------------------------------------
#region Internal Methods
/// <summary>
/// Invalidates grid caches and makes the grid dirty for measure.
/// </summary>
internal void Invalidate()
{
CellsStructureDirty = true;
InvalidateMeasure();
}
/// <summary>
/// Returns final width for a column.
/// </summary>
/// <remarks>
/// Used from public ColumnDefinition ActualWidth. Calculates final width using offset data.
/// </remarks>
internal double GetFinalColumnDefinitionWidth(int columnIndex)
{
double value = 0.0;
Invariant.Assert(_data != null);
// actual value calculations require structure to be up-to-date
if (!ColumnDefinitionCollectionDirty)
{
DefinitionBase[] definitions = DefinitionsU;
value = definitions[(columnIndex + 1) % definitions.Length].FinalOffset;
if (columnIndex != 0) { value -= definitions[columnIndex].FinalOffset; }
}
return (value);
}
/// <summary>
/// Returns final height for a row.
/// </summary>
/// <remarks>
/// Used from public RowDefinition ActualHeight. Calculates final height using offset data.
/// </remarks>
internal double GetFinalRowDefinitionHeight(int rowIndex)
{
double value = 0.0;
Invariant.Assert(_data != null);
// actual value calculations require structure to be up-to-date
if (!RowDefinitionCollectionDirty)
{
DefinitionBase[] definitions = DefinitionsV;
value = definitions[(rowIndex + 1) % definitions.Length].FinalOffset;
if (rowIndex != 0) { value -= definitions[rowIndex].FinalOffset; }
}
return (value);
}
#endregion Internal Methods
//------------------------------------------------------
//
// Internal Properties
//
//------------------------------------------------------
#region Internal Properties
/// <summary>
/// Convenience accessor to MeasureOverrideInProgress bit flag.
/// </summary>
internal bool MeasureOverrideInProgress
{
get { return (CheckFlagsAnd(Flags.MeasureOverrideInProgress)); }
set { SetFlags(value, Flags.MeasureOverrideInProgress); }
}
/// <summary>
/// Convenience accessor to ArrangeOverrideInProgress bit flag.
/// </summary>
internal bool ArrangeOverrideInProgress
{
get { return (CheckFlagsAnd(Flags.ArrangeOverrideInProgress)); }
set { SetFlags(value, Flags.ArrangeOverrideInProgress); }
}
/// <summary>
/// Convenience accessor to ValidDefinitionsUStructure bit flag.
/// </summary>
internal bool ColumnDefinitionCollectionDirty
{
get { return (!CheckFlagsAnd(Flags.ValidDefinitionsUStructure)); }
set { SetFlags(!value, Flags.ValidDefinitionsUStructure); }
}
/// <summary>
/// Convenience accessor to ValidDefinitionsVStructure bit flag.
/// </summary>
internal bool RowDefinitionCollectionDirty
{
get { return (!CheckFlagsAnd(Flags.ValidDefinitionsVStructure)); }
set { SetFlags(!value, Flags.ValidDefinitionsVStructure); }
}
#endregion Internal Properties
//------------------------------------------------------
//
// Private Methods
//
//------------------------------------------------------
#region Private Methods
/// <summary>
/// Lays out cells according to rows and columns, and creates lookup grids.
/// </summary>
private void ValidateCells()
{
EnterCounter(Counters._ValidateCells);
if (CellsStructureDirty)
{
ValidateCellsCore();
CellsStructureDirty = false;
}
ExitCounter(Counters._ValidateCells);
}
/// <summary>
/// ValidateCellsCore
/// </summary>
private void ValidateCellsCore()
{
UIElementCollection children = InternalChildren;
ExtendedData extData = ExtData;
extData.CellCachesCollection = new CellCache[children.Count];
extData.CellGroup1 = int.MaxValue;
extData.CellGroup2 = int.MaxValue;
extData.CellGroup3 = int.MaxValue;
extData.CellGroup4 = int.MaxValue;
bool hasStarCellsU = false;
bool hasStarCellsV = false;
bool hasGroup3CellsInAutoRows = false;
for (int i = PrivateCells.Length - 1; i >= 0; --i)
{
UIElement child = children[i];
if (child == null)
{
continue;
}
CellCache cell = new CellCache
{
//
// read and cache child positioning properties
//
// read indices from the corresponding properties
// clamp to value < number_of_columns
// column >= 0 is guaranteed by property value validation callback
ColumnIndex = Math.Min(GetColumn(child), DefinitionsU.Length - 1),
// clamp to value < number_of_rows
// row >= 0 is guaranteed by property value validation callback
RowIndex = Math.Min(GetRow(child), DefinitionsV.Length - 1)
};
// read span properties
// clamp to not exceed beyond right side of the grid
// column_span > 0 is guaranteed by property value validation callback
cell.ColumnSpan = Math.Min(GetColumnSpan(child), DefinitionsU.Length - cell.ColumnIndex);
// clamp to not exceed beyond bottom side of the grid
// row_span > 0 is guaranteed by property value validation callback
cell.RowSpan = Math.Min(GetRowSpan(child), DefinitionsV.Length - cell.RowIndex);
Debug.Assert(0 <= cell.ColumnIndex && cell.ColumnIndex < DefinitionsU.Length);
Debug.Assert(0 <= cell.RowIndex && cell.RowIndex < DefinitionsV.Length);
//
// calculate and cache length types for the child
//
cell.SizeTypeU = GetLengthTypeForRange(DefinitionsU, cell.ColumnIndex, cell.ColumnSpan);
cell.SizeTypeV = GetLengthTypeForRange(DefinitionsV, cell.RowIndex, cell.RowSpan);
hasStarCellsU |= cell.IsStarU;
hasStarCellsV |= cell.IsStarV;
//
// distribute cells into four groups.
//
if (!cell.IsStarV)
{
if (!cell.IsStarU)
{
cell.Next = extData.CellGroup1;
extData.CellGroup1 = i;
}
else
{
cell.Next = extData.CellGroup3;
extData.CellGroup3 = i;
// remember if this cell belongs to auto row
hasGroup3CellsInAutoRows |= cell.IsAutoV;
}
}
else
{
if ( cell.IsAutoU
// note below: if spans through Star column it is NOT Auto
&& !cell.IsStarU )
{
cell.Next = extData.CellGroup2;
extData.CellGroup2 = i;
}
else
{
cell.Next = extData.CellGroup4;
extData.CellGroup4 = i;
}
}
PrivateCells[i] = cell;
}
HasStarCellsU = hasStarCellsU;
HasStarCellsV = hasStarCellsV;
HasGroup3CellsInAutoRows = hasGroup3CellsInAutoRows;
}
/// <summary>
/// Initializes DefinitionsU memeber either to user supplied ColumnDefinitions collection
/// or to a default single element collection. DefinitionsU gets trimmed to size.
/// </summary>
/// <remarks>
/// This is one of two methods, where ColumnDefinitions and DefinitionsU are directly accessed.
/// All the rest measure / arrange / render code must use DefinitionsU.
/// </remarks>
private void ValidateDefinitionsUStructure()
{
EnterCounter(Counters._ValidateColsStructure);
if (ColumnDefinitionCollectionDirty)
{
ExtendedData extData = ExtData;
if (extData.ColumnDefinitions == null)
{
if (extData.DefinitionsU == null)
{
extData.DefinitionsU = new DefinitionBase[] { new ColumnDefinition() };
}
}
else
{
extData.ColumnDefinitions.InternalTrimToSize();
if (extData.ColumnDefinitions.InternalCount == 0)
{
// if column definitions collection is empty
// mockup array with one column
extData.DefinitionsU = new DefinitionBase[] { new ColumnDefinition() };
}
else
{
extData.DefinitionsU = extData.ColumnDefinitions.InternalItems;
}
}
ColumnDefinitionCollectionDirty = false;
}
Debug.Assert(ExtData.DefinitionsU != null && ExtData.DefinitionsU.Length > 0);
ExitCounter(Counters._ValidateColsStructure);
}
/// <summary>
/// Initializes DefinitionsV memeber either to user supplied RowDefinitions collection
/// or to a default single element collection. DefinitionsV gets trimmed to size.
/// </summary>
/// <remarks>
/// This is one of two methods, where RowDefinitions and DefinitionsV are directly accessed.
/// All the rest measure / arrange / render code must use DefinitionsV.
/// </remarks>
private void ValidateDefinitionsVStructure()
{
EnterCounter(Counters._ValidateRowsStructure);
if (RowDefinitionCollectionDirty)
{
ExtendedData extData = ExtData;
if (extData.RowDefinitions == null)
{
if (extData.DefinitionsV == null)
{
extData.DefinitionsV = new DefinitionBase[] { new RowDefinition() };
}
}
else
{
extData.RowDefinitions.InternalTrimToSize();
if (extData.RowDefinitions.InternalCount == 0)
{
// if row definitions collection is empty
// mockup array with one row
extData.DefinitionsV = new DefinitionBase[] { new RowDefinition() };
}
else
{
extData.DefinitionsV = extData.RowDefinitions.InternalItems;
}
}
RowDefinitionCollectionDirty = false;
}
Debug.Assert(ExtData.DefinitionsV != null && ExtData.DefinitionsV.Length > 0);
ExitCounter(Counters._ValidateRowsStructure);
}
/// <summary>
/// Validates layout time size type information on given array of definitions.
/// Sets MinSize and MeasureSizes.
/// </summary>
/// <param name="definitions">Array of definitions to update.</param>
/// <param name="treatStarAsAuto">if "true" then star definitions are treated as Auto.</param>
private void ValidateDefinitionsLayout(
DefinitionBase[] definitions,
bool treatStarAsAuto)
{
for (int i = 0; i < definitions.Length; ++i)
{
definitions[i].OnBeforeLayout(this);
double userMinSize = definitions[i].UserMinSize;
double userMaxSize = definitions[i].UserMaxSize;
double userSize = 0;
switch (definitions[i].UserSize.GridUnitType)
{
case (GridUnitType.Pixel):
definitions[i].SizeType = LayoutTimeSizeType.Pixel;
userSize = definitions[i].UserSize.Value;
// this was brought with NewLayout and defeats squishy behavior
userMinSize = Math.Max(userMinSize, Math.Min(userSize, userMaxSize));
break;
case (GridUnitType.Auto):
definitions[i].SizeType = LayoutTimeSizeType.Auto;
userSize = double.PositiveInfinity;
break;
case (GridUnitType.Star):
if (treatStarAsAuto)
{
definitions[i].SizeType = LayoutTimeSizeType.Auto;
userSize = double.PositiveInfinity;
}
else
{
definitions[i].SizeType = LayoutTimeSizeType.Star;
userSize = double.PositiveInfinity;
}
break;
default:
Debug.Assert(false);
break;
}
definitions[i].UpdateMinSize(userMinSize);
definitions[i].MeasureSize = Math.Max(userMinSize, Math.Min(userSize, userMaxSize));
}
}
private double[] CacheMinSizes(int cellsHead, bool isRows)
{
double[] minSizes = isRows ? new double[DefinitionsV.Length] : new double[DefinitionsU.Length];
for (int j=0; j<minSizes.Length; j++)
{
minSizes[j] = -1;
}
int i = cellsHead;
do
{
if (isRows)
{
minSizes[PrivateCells[i].RowIndex] = DefinitionsV[PrivateCells[i].RowIndex].RawMinSize;
}
else
{
minSizes[PrivateCells[i].ColumnIndex] = DefinitionsU[PrivateCells[i].ColumnIndex].RawMinSize;
}
i = PrivateCells[i].Next;
} while (i < PrivateCells.Length);
return minSizes;
}
private void ApplyCachedMinSizes(double[] minSizes, bool isRows)
{
for (int i=0; i<minSizes.Length; i++)
{
if (DoubleUtil.GreaterThanOrClose(minSizes[i], 0))
{
if (isRows)
{
DefinitionsV[i].SetMinSize(minSizes[i]);
}
else
{
DefinitionsU[i].SetMinSize(minSizes[i]);
}
}
}
}
private void MeasureCellsGroup(
int cellsHead,
Size referenceSize,
bool ignoreDesiredSizeU,
bool forceInfinityV)
{
bool unusedHasDesiredSizeUChanged;
MeasureCellsGroup(cellsHead, referenceSize, ignoreDesiredSizeU, forceInfinityV, out unusedHasDesiredSizeUChanged);
}
/// <summary>
/// Measures one group of cells.
/// </summary>
/// <param name="cellsHead">Head index of the cells chain.</param>
/// <param name="referenceSize">Reference size for spanned cells
/// calculations.</param>
/// <param name="ignoreDesiredSizeU">When "true" cells' desired
/// width is not registered in columns.</param>
/// <param name="forceInfinityV">Passed through to MeasureCell.
/// When "true" cells' desired height is not registered in rows.</param>
private void MeasureCellsGroup(
int cellsHead,
Size referenceSize,
bool ignoreDesiredSizeU,
bool forceInfinityV,
out bool hasDesiredSizeUChanged)
{
hasDesiredSizeUChanged = false;
if (cellsHead >= PrivateCells.Length)
{
return;
}
UIElementCollection children = InternalChildren;
Hashtable spanStore = null;
bool ignoreDesiredSizeV = forceInfinityV;
int i = cellsHead;
do
{
double oldWidth = children[i].DesiredSize.Width;
MeasureCell(i, forceInfinityV);
hasDesiredSizeUChanged |= !DoubleUtil.AreClose(oldWidth, children[i].DesiredSize.Width);
if (!ignoreDesiredSizeU)
{
if (PrivateCells[i].ColumnSpan == 1)
{
DefinitionsU[PrivateCells[i].ColumnIndex].UpdateMinSize(Math.Min(children[i].DesiredSize.Width, DefinitionsU[PrivateCells[i].ColumnIndex].UserMaxSize));
}
else
{
RegisterSpan(
ref spanStore,
PrivateCells[i].ColumnIndex,
PrivateCells[i].ColumnSpan,
true,
children[i].DesiredSize.Width);
}
}
if (!ignoreDesiredSizeV)
{
if (PrivateCells[i].RowSpan == 1)
{
DefinitionsV[PrivateCells[i].RowIndex].UpdateMinSize(Math.Min(children[i].DesiredSize.Height, DefinitionsV[PrivateCells[i].RowIndex].UserMaxSize));
}
else
{
RegisterSpan(
ref spanStore,
PrivateCells[i].RowIndex,
PrivateCells[i].RowSpan,
false,
children[i].DesiredSize.Height);
}
}
i = PrivateCells[i].Next;
} while (i < PrivateCells.Length);
if (spanStore != null)
{
foreach (DictionaryEntry e in spanStore)
{
SpanKey key = (SpanKey)e.Key;
double requestedSize = (double)e.Value;
EnsureMinSizeInDefinitionRange(
key.U ? DefinitionsU : DefinitionsV,
key.Start,
key.Count,
requestedSize,
key.U ? referenceSize.Width : referenceSize.Height);
}
}
}
/// <summary>
/// Helper method to register a span information for delayed processing.
/// </summary>
/// <param name="store">Reference to a hashtable object used as storage.</param>
/// <param name="start">Span starting index.</param>
/// <param name="count">Span count.</param>
/// <param name="u"><c>true</c> if this is a column span. <c>false</c> if this is a row span.</param>
/// <param name="value">Value to store. If an entry already exists the biggest value is stored.</param>
private static void RegisterSpan(
ref Hashtable store,
int start,
int count,
bool u,
double value)
{
if (store == null)
{
store = new Hashtable();
}
SpanKey key = new SpanKey(start, count, u);
object o = store[key];
if ( o == null
|| value > (double)o )
{
store[key] = value;
}
}
/// <summary>
/// Takes care of measuring a single cell.
/// </summary>
/// <param name="cell">Index of the cell to measure.</param>
/// <param name="forceInfinityV">If "true" then cell is always
/// calculated to infinite height.</param>
private void MeasureCell(
int cell,
bool forceInfinityV)
{
EnterCounter(Counters._MeasureCell);
double cellMeasureWidth;
double cellMeasureHeight;
if ( PrivateCells[cell].IsAutoU
&& !PrivateCells[cell].IsStarU )
{
// if cell belongs to at least one Auto column and not a single Star column
// then it should be calculated "to content", thus it is possible to "shortcut"
// calculations and simply assign PositiveInfinity here.
cellMeasureWidth = double.PositiveInfinity;
}
else
{
// otherwise...
cellMeasureWidth = GetMeasureSizeForRange(
DefinitionsU,
PrivateCells[cell].ColumnIndex,
PrivateCells[cell].ColumnSpan);
}
if (forceInfinityV)
{
cellMeasureHeight = double.PositiveInfinity;
}
else if ( PrivateCells[cell].IsAutoV
&& !PrivateCells[cell].IsStarV )
{
// if cell belongs to at least one Auto row and not a single Star row
// then it should be calculated "to content", thus it is possible to "shortcut"
// calculations and simply assign PositiveInfinity here.
cellMeasureHeight = double.PositiveInfinity;
}
else
{
cellMeasureHeight = GetMeasureSizeForRange(
DefinitionsV,
PrivateCells[cell].RowIndex,
PrivateCells[cell].RowSpan);
}
EnterCounter(Counters.__MeasureChild);
UIElement child = InternalChildren[cell];
if (child != null)
{
Size childConstraint = new Size(cellMeasureWidth, cellMeasureHeight);
child.Measure(childConstraint);
}
ExitCounter(Counters.__MeasureChild);
ExitCounter(Counters._MeasureCell);
}
/// <summary>
/// Calculates one dimensional measure size for given definitions' range.
/// </summary>
/// <param name="definitions">Source array of definitions to read values from.</param>
/// <param name="start">Starting index of the range.</param>
/// <param name="count">Number of definitions included in the range.</param>
/// <returns>Calculated measure size.</returns>
/// <remarks>
/// For "Auto" definitions MinWidth is used in place of PreferredSize.
/// </remarks>
private double GetMeasureSizeForRange(
DefinitionBase[] definitions,
int start,
int count)
{
Debug.Assert(0 < count && 0 <= start && (start + count) <= definitions.Length);
double measureSize = 0;
int i = start + count - 1;
do
{
measureSize += (definitions[i].SizeType == LayoutTimeSizeType.Auto)
? definitions[i].MinSize
: definitions[i].MeasureSize;
} while (--i >= start);
return (measureSize);
}
/// <summary>
/// Accumulates length type information for given definition's range.
/// </summary>
/// <param name="definitions">Source array of definitions to read values from.</param>
/// <param name="start">Starting index of the range.</param>
/// <param name="count">Number of definitions included in the range.</param>
/// <returns>Length type for given range.</returns>
private LayoutTimeSizeType GetLengthTypeForRange(
DefinitionBase[] definitions,
int start,
int count)
{
Debug.Assert(0 < count && 0 <= start && (start + count) <= definitions.Length);
LayoutTimeSizeType lengthType = LayoutTimeSizeType.None;
int i = start + count - 1;
do
{
lengthType |= definitions[i].SizeType;
} while (--i >= start);
return (lengthType);
}
/// <summary>
/// Distributes min size back to definition array's range.
/// </summary>
/// <param name="start">Start of the range.</param>
/// <param name="count">Number of items in the range.</param>
/// <param name="requestedSize">Minimum size that should "fit" into the definitions range.</param>
/// <param name="definitions">Definition array receiving distribution.</param>
/// <param name="percentReferenceSize">Size used to resolve percentages.</param>
private void EnsureMinSizeInDefinitionRange(
DefinitionBase[] definitions,
int start,
int count,
double requestedSize,
double percentReferenceSize)
{
Debug.Assert(1 < count && 0 <= start && (start + count) <= definitions.Length);
// avoid processing when asked to distribute "0"
if (!_IsZero(requestedSize))
{
DefinitionBase[] tempDefinitions = TempDefinitions; // temp array used to remember definitions for sorting
int end = start + count;
int autoDefinitionsCount = 0;
double rangeMinSize = 0;
double rangePreferredSize = 0;
double rangeMaxSize = 0;
double maxMaxSize = 0; // maximum of maximum sizes
// first accumulate the necessary information:
// a) sum up the sizes in the range;
// b) count the number of auto definitions in the range;
// c) initialize temp array
// d) cache the maximum size into SizeCache
// e) accumulate max of max sizes
for (int i = start; i < end; ++i)
{
double minSize = definitions[i].MinSize;
double preferredSize = definitions[i].PreferredSize;
double maxSize = Math.Max(definitions[i].UserMaxSize, minSize);
rangeMinSize += minSize;
rangePreferredSize += preferredSize;
rangeMaxSize += maxSize;
definitions[i].SizeCache = maxSize;
// sanity check: no matter what, but min size must always be the smaller;
// max size must be the biggest; and preferred should be in between
Debug.Assert( minSize <= preferredSize
&& preferredSize <= maxSize
&& rangeMinSize <= rangePreferredSize
&& rangePreferredSize <= rangeMaxSize );
if (maxMaxSize < maxSize) maxMaxSize = maxSize;
if (definitions[i].UserSize.IsAuto) autoDefinitionsCount++;
tempDefinitions[i - start] = definitions[i];
}
// avoid processing if the range already big enough
if (requestedSize > rangeMinSize)
{
if (requestedSize <= rangePreferredSize)
{
//
// requestedSize fits into preferred size of the range.
// distribute according to the following logic:
// * do not distribute into auto definitions - they should continue to stay "tight";
// * for all non-auto definitions distribute to equi-size min sizes, without exceeding preferred size.
//
// in order to achieve that, definitions are sorted in a way that all auto definitions
// are first, then definitions follow ascending order with PreferredSize as the key of sorting.
//
double sizeToDistribute;
int i;
tempDefinitions.AsSpan(0, count).Sort(s_spanPreferredDistributionOrderComparer);
for (i = 0, sizeToDistribute = requestedSize; i < autoDefinitionsCount; ++i)
{
// sanity check: only auto definitions allowed in this loop
Debug.Assert(tempDefinitions[i].UserSize.IsAuto);
// adjust sizeToDistribute value by subtracting auto definition min size
sizeToDistribute -= (tempDefinitions[i].MinSize);
}
for (; i < count; ++i)
{
// sanity check: no auto definitions allowed in this loop
Debug.Assert(!tempDefinitions[i].UserSize.IsAuto);
double newMinSize = Math.Min(sizeToDistribute / (count - i), tempDefinitions[i].PreferredSize);
if (newMinSize > tempDefinitions[i].MinSize) { tempDefinitions[i].UpdateMinSize(newMinSize); }
sizeToDistribute -= newMinSize;
}
// sanity check: requested size must all be distributed
Debug.Assert(_IsZero(sizeToDistribute));
}
else if (requestedSize <= rangeMaxSize)
{
//
// requestedSize bigger than preferred size, but fit into max size of the range.
// distribute according to the following logic:
// * do not distribute into auto definitions, if possible - they should continue to stay "tight";
// * for all non-auto definitions distribute to euqi-size min sizes, without exceeding max size.
//
// in order to achieve that, definitions are sorted in a way that all non-auto definitions
// are last, then definitions follow ascending order with MaxSize as the key of sorting.
//
double sizeToDistribute;
int i;
tempDefinitions.AsSpan(0, count).Sort(s_spanMaxDistributionOrderComparer);
for (i = 0, sizeToDistribute = requestedSize - rangePreferredSize; i < count - autoDefinitionsCount; ++i)
{
// sanity check: no auto definitions allowed in this loop
Debug.Assert(!tempDefinitions[i].UserSize.IsAuto);
double preferredSize = tempDefinitions[i].PreferredSize;
double newMinSize = preferredSize + sizeToDistribute / (count - autoDefinitionsCount - i);
tempDefinitions[i].UpdateMinSize(Math.Min(newMinSize, tempDefinitions[i].SizeCache));
sizeToDistribute -= (tempDefinitions[i].MinSize - preferredSize);
}
for (; i < count; ++i)
{
// sanity check: only auto definitions allowed in this loop
Debug.Assert(tempDefinitions[i].UserSize.IsAuto);
double preferredSize = tempDefinitions[i].MinSize;
double newMinSize = preferredSize + sizeToDistribute / (count - i);
tempDefinitions[i].UpdateMinSize(Math.Min(newMinSize, tempDefinitions[i].SizeCache));
sizeToDistribute -= (tempDefinitions[i].MinSize - preferredSize);
}
// sanity check: requested size must all be distributed
Debug.Assert(_IsZero(sizeToDistribute));
}
else
{
//
// requestedSize bigger than max size of the range.
// distribute according to the following logic:
// * for all definitions distribute to equi-size min sizes.
//
double equalSize = requestedSize / count;
if ( equalSize < maxMaxSize
&& !_AreClose(equalSize, maxMaxSize) )
{
// equi-size is less than maximum of maxSizes.
// in this case distribute so that smaller definitions grow faster than
// bigger ones.
double totalRemainingSize = maxMaxSize * count - rangeMaxSize;
double sizeToDistribute = requestedSize - rangeMaxSize;
// sanity check: totalRemainingSize and sizeToDistribute must be real positive numbers
Debug.Assert( !double.IsInfinity(totalRemainingSize)
&& !double.IsNaN(totalRemainingSize)
&& totalRemainingSize > 0
&& !double.IsInfinity(sizeToDistribute)
&& !double.IsNaN(sizeToDistribute)
&& sizeToDistribute > 0 );
for (int i = 0; i < count; ++i)
{
double deltaSize = (maxMaxSize - tempDefinitions[i].SizeCache) * sizeToDistribute / totalRemainingSize;
tempDefinitions[i].UpdateMinSize(tempDefinitions[i].SizeCache + deltaSize);
}
}
else
{
//
// equi-size is greater or equal to maximum of max sizes.
// all definitions receive equalSize as their mim sizes.
//
for (int i = 0; i < count; ++i)
{
tempDefinitions[i].UpdateMinSize(equalSize);
}
}
}
}
}
}
/// <summary>
/// Resolves Star's for given array of definitions.
/// </summary>
/// <param name="definitions">Array of definitions to resolve stars.</param>
/// <param name="availableSize">All available size.</param>
/// <remarks>
/// Must initialize LayoutSize for all Star entries in given array of definitions.
/// </remarks>
private void ResolveStar(
DefinitionBase[] definitions,
double availableSize)
{
if (FrameworkAppContextSwitches.GridStarDefinitionsCanExceedAvailableSpace)
{
ResolveStarLegacy(definitions, availableSize);
}
else
{
ResolveStarMaxDiscrepancy(definitions, availableSize);
}
}
// original implementation, used from 3.0 through 4.6.2
private void ResolveStarLegacy(
DefinitionBase[] definitions,
double availableSize)
{
DefinitionBase[] tempDefinitions = TempDefinitions;
int starDefinitionsCount = 0;
double takenSize = 0;
for (int i = 0; i < definitions.Length; ++i)
{
switch (definitions[i].SizeType)
{
case (LayoutTimeSizeType.Auto):
takenSize += definitions[i].MinSize;
break;
case (LayoutTimeSizeType.Pixel):
takenSize += definitions[i].MeasureSize;
break;
case (LayoutTimeSizeType.Star):
{
tempDefinitions[starDefinitionsCount++] = definitions[i];
double starValue = definitions[i].UserSize.Value;
if (_IsZero(starValue))
{
definitions[i].MeasureSize = 0;
definitions[i].SizeCache = 0;
}
else
{
// clipping by c_starClip guarantees that sum of even a very big number of max'ed out star values
// can be summed up without overflow
starValue = Math.Min(starValue, c_starClip);
// Note: normalized star value is temporary cached into MeasureSize
definitions[i].MeasureSize = starValue;
double maxSize = Math.Max(definitions[i].MinSize, definitions[i].UserMaxSize);
maxSize = Math.Min(maxSize, c_starClip);
definitions[i].SizeCache = maxSize / starValue;
}
}
break;
}
}
if (starDefinitionsCount > 0)
{
tempDefinitions.AsSpan(0, starDefinitionsCount).Sort(s_starDistributionOrderComparer);
// the 'do {} while' loop below calculates sum of star weights in order to avoid fp overflow...
// partial sum value is stored in each definition's SizeCache member.
// this way the algorithm guarantees (starValue <= definition.SizeCache) and thus
// (starValue / definition.SizeCache) will never overflow due to sum of star weights becoming zero.
// this is an important change from previous implementation where the following was possible:
// ((BigValueStar + SmallValueStar) - BigValueStar) resulting in 0...
double allStarWeights = 0;
int i = starDefinitionsCount - 1;
do
{
allStarWeights += tempDefinitions[i].MeasureSize;
tempDefinitions[i].SizeCache = allStarWeights;
} while (--i >= 0);
i = 0;
do
{
double resolvedSize;
double starValue = tempDefinitions[i].MeasureSize;
if (_IsZero(starValue))
{
resolvedSize = tempDefinitions[i].MinSize;
}
else
{
double userSize = Math.Max(availableSize - takenSize, 0.0) * (starValue / tempDefinitions[i].SizeCache);
resolvedSize = Math.Min(userSize, tempDefinitions[i].UserMaxSize);
resolvedSize = Math.Max(tempDefinitions[i].MinSize, resolvedSize);
}
tempDefinitions[i].MeasureSize = resolvedSize;
takenSize += resolvedSize;
} while (++i < starDefinitionsCount);
}
}
// new implementation as of 4.7. Several improvements:
// 1. Allocate to *-defs hitting their min or max constraints, before allocating
// to other *-defs. A def that hits its min uses more space than its
// proportional share, reducing the space available to everyone else.
// The legacy algorithm deducted this space only from defs processed
// after the min; the new algorithm deducts it proportionally from all
// defs. This avoids the "*-defs exceed available space" problem,
// and other related problems where *-defs don't receive proportional
// allocations even though no constraints are preventing it.
// 2. When multiple defs hit min or max, resolve the one with maximum
// discrepancy (defined below). This avoids discontinuities - small
// change in available space resulting in large change to one def's allocation.
// 3. Correct handling of large *-values, including Infinity.
private void ResolveStarMaxDiscrepancy(
DefinitionBase[] definitions,
double availableSize)
{
int defCount = definitions.Length;
DefinitionBase[] tempDefinitions = TempDefinitions;
int minCount = 0, maxCount = 0;
double takenSize = 0;
double totalStarWeight = 0.0;
int starCount = 0; // number of unresolved *-definitions
double scale = 1.0; // scale factor applied to each *-weight; negative means "Infinity is present"
// Phase 1. Determine the maximum *-weight and prepare to adjust *-weights
double maxStar = 0.0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.SizeType == LayoutTimeSizeType.Star)
{
++starCount;
def.MeasureSize = 1.0; // meaning "not yet resolved in phase 3"
if (def.UserSize.Value > maxStar)
{
maxStar = def.UserSize.Value;
}
}
}
if (Double.IsPositiveInfinity(maxStar))
{
// negative scale means one or more of the weights was Infinity
scale = -1.0;
}
else if (starCount > 0)
{
// if maxStar * starCount > Double.Max, summing all the weights could cause
// floating-point overflow. To avoid that, scale the weights by a factor to keep
// the sum within limits. Choose a power of 2, to preserve precision.
double power = Math.Floor(Math.Log(Double.MaxValue / maxStar / starCount, 2.0));
if (power < 0.0)
{
scale = Math.Pow(2.0, power - 4.0); // -4 is just for paranoia
}
}
// normally Phases 2 and 3 execute only once. But certain unusual combinations of weights
// and constraints can defeat the algorithm, in which case we repeat Phases 2 and 3.
// More explanation below...
for (bool runPhase2and3=true; runPhase2and3; )
{
// Phase 2. Compute total *-weight W and available space S.
// For *-items that have Min or Max constraints, compute the ratios used to decide
// whether proportional space is too big or too small and add the item to the
// corresponding list. (The "min" list is in the first half of tempDefinitions,
// the "max" list in the second half. TempDefinitions has capacity at least
// 2*defCount, so there's room for both lists.)
totalStarWeight = 0.0;
takenSize = 0.0;
minCount = maxCount = 0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
switch (def.SizeType)
{
case (LayoutTimeSizeType.Auto):
takenSize += definitions[i].MinSize;
break;
case (LayoutTimeSizeType.Pixel):
takenSize += def.MeasureSize;
break;
case (LayoutTimeSizeType.Star):
if (def.MeasureSize < 0.0)
{
takenSize += -def.MeasureSize; // already resolved
}
else
{
double starWeight = StarWeight(def, scale);
totalStarWeight += starWeight;
if (def.MinSize > 0.0)
{
// store ratio w/min in MeasureSize (for now)
tempDefinitions[minCount++] = def;
def.MeasureSize = starWeight / def.MinSize;
}
double effectiveMaxSize = Math.Max(def.MinSize, def.UserMaxSize);
if (!Double.IsPositiveInfinity(effectiveMaxSize))
{
// store ratio w/max in SizeCache (for now)
tempDefinitions[defCount + maxCount++] = def;
def.SizeCache = starWeight / effectiveMaxSize;
}
}
break;
}
}
// Phase 3. Resolve *-items whose proportional sizes are too big or too small.
int minCountPhase2 = minCount, maxCountPhase2 = maxCount;
double takenStarWeight = 0.0;
double remainingAvailableSize = availableSize - takenSize;
double remainingStarWeight = totalStarWeight - takenStarWeight;
tempDefinitions.AsSpan(0, minCount).Sort(s_minRatioComparer);
tempDefinitions.AsSpan(defCount, maxCount).Sort(s_maxRatioComparer);
while (minCount + maxCount > 0 && remainingAvailableSize > 0.0)
{
// the calculation
// remainingStarWeight = totalStarWeight - takenStarWeight
// is subject to catastrophic cancellation if the two terms are nearly equal,
// which leads to meaningless results. Check for that, and recompute from
// the remaining definitions. [This leads to quadratic behavior in really
// pathological cases - but they'd never arise in practice.]
const double starFactor = 1.0 / 256.0; // lose more than 8 bits of precision -> recalculate
if (remainingStarWeight < totalStarWeight * starFactor)
{
takenStarWeight = 0.0;
totalStarWeight = 0.0;
for (int i = 0; i < defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.SizeType == LayoutTimeSizeType.Star && def.MeasureSize > 0.0)
{
totalStarWeight += StarWeight(def, scale);
}
}
remainingStarWeight = totalStarWeight - takenStarWeight;
}
double minRatio = (minCount > 0) ? tempDefinitions[minCount - 1].MeasureSize : Double.PositiveInfinity;
double maxRatio = (maxCount > 0) ? tempDefinitions[defCount + maxCount - 1].SizeCache : -1.0;
// choose the def with larger ratio to the current proportion ("max discrepancy")
double proportion = remainingStarWeight / remainingAvailableSize;
bool? chooseMin = Choose(minRatio, maxRatio, proportion);
// if no def was chosen, advance to phase 4; the current proportion doesn't
// conflict with any min or max values.
if (!(chooseMin.HasValue))
{
break;
}
// get the chosen definition and its resolved size
DefinitionBase resolvedDef;
double resolvedSize;
if (chooseMin == true)
{
resolvedDef = tempDefinitions[minCount - 1];
resolvedSize = resolvedDef.MinSize;
--minCount;
}
else
{
resolvedDef = tempDefinitions[defCount + maxCount - 1];
resolvedSize = Math.Max(resolvedDef.MinSize, resolvedDef.UserMaxSize);
--maxCount;
}
// resolve the chosen def, deduct its contributions from W and S.
// Defs resolved in phase 3 are marked by storing the negative of their resolved
// size in MeasureSize, to distinguish them from a pending def.
takenSize += resolvedSize;
resolvedDef.MeasureSize = -resolvedSize;
takenStarWeight += StarWeight(resolvedDef, scale);
--starCount;
remainingAvailableSize = availableSize - takenSize;
remainingStarWeight = totalStarWeight - takenStarWeight;
// advance to the next candidate defs, removing ones that have been resolved.
// Both counts are advanced, as a def might appear in both lists.
while (minCount > 0 && tempDefinitions[minCount - 1].MeasureSize < 0.0)
{
--minCount;
tempDefinitions[minCount] = null;
}
while (maxCount > 0 && tempDefinitions[defCount + maxCount - 1].MeasureSize < 0.0)
{
--maxCount;
tempDefinitions[defCount + maxCount] = null;
}
}
// decide whether to run Phase2 and Phase3 again. There are 3 cases:
// 1. There is space available, and *-defs remaining. This is the
// normal case - move on to Phase 4 to allocate the remaining
// space proportionally to the remaining *-defs.
// 2. There is space available, but no *-defs. This implies at least one
// def was resolved as 'max', taking less space than its proportion.
// If there are also 'min' defs, reconsider them - we can give
// them more space. If not, all the *-defs are 'max', so there's
// no way to use all the available space.
// 3. We allocated too much space. This implies at least one def was
// resolved as 'min'. If there are also 'max' defs, reconsider
// them, otherwise the over-allocation is an inevitable consequence
// of the given min constraints.
// Note that if we return to Phase2, at least one *-def will have been
// resolved. This guarantees we don't run Phase2+3 infinitely often.
runPhase2and3 = false;
if (starCount == 0 && takenSize < availableSize)
{
// if no *-defs remain and we haven't allocated all the space, reconsider the defs
// resolved as 'min'. Their allocation can be increased to make up the gap.
for (int i = minCount; i < minCountPhase2; ++i)
{
DefinitionBase def = tempDefinitions[i];
if (def != null)
{
def.MeasureSize = 1.0; // mark as 'not yet resolved'
++starCount;
runPhase2and3 = true; // found a candidate, so re-run Phases 2 and 3
}
}
}
if (takenSize > availableSize)
{
// if we've allocated too much space, reconsider the defs
// resolved as 'max'. Their allocation can be decreased to make up the gap.
for (int i = maxCount; i < maxCountPhase2; ++i)
{
DefinitionBase def = tempDefinitions[defCount + i];
if (def != null)
{
def.MeasureSize = 1.0; // mark as 'not yet resolved'
++starCount;
runPhase2and3 = true; // found a candidate, so re-run Phases 2 and 3
}
}
}
}
// Phase 4. Resolve the remaining defs proportionally.
starCount = 0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.SizeType == LayoutTimeSizeType.Star)
{
if (def.MeasureSize < 0.0)
{
// this def was resolved in phase 3 - fix up its measure size
def.MeasureSize = -def.MeasureSize;
}
else
{
// this def needs resolution, add it to the list, sorted by *-weight
tempDefinitions[starCount++] = def;
def.MeasureSize = StarWeight(def, scale);
}
}
}
if (starCount > 0)
{
tempDefinitions.AsSpan(0, starCount).Sort(s_starWeightComparer);
// compute the partial sums of *-weight, in increasing order of weight
// for minimal loss of precision.
totalStarWeight = 0.0;
for (int i = 0; i < starCount; ++i)
{
DefinitionBase def = tempDefinitions[i];
totalStarWeight += def.MeasureSize;
def.SizeCache = totalStarWeight;
}
// resolve the defs, in decreasing order of weight
for (int i = starCount - 1; i >= 0; --i)
{
DefinitionBase def = tempDefinitions[i];
double resolvedSize = (def.MeasureSize > 0.0) ? Math.Max(availableSize - takenSize, 0.0) * (def.MeasureSize / def.SizeCache) : 0.0;
// min and max should have no effect by now, but just in case...
resolvedSize = Math.Min(resolvedSize, def.UserMaxSize);
resolvedSize = Math.Max(def.MinSize, resolvedSize);
def.MeasureSize = resolvedSize;
takenSize += resolvedSize;
}
}
}
/// <summary>
/// Calculates desired size for given array of definitions.
/// </summary>
/// <param name="definitions">Array of definitions to use for calculations.</param>
/// <returns>Desired size.</returns>
private double CalculateDesiredSize(
DefinitionBase[] definitions)
{
double desiredSize = 0;
for (int i = 0; i < definitions.Length; ++i)
{
desiredSize += definitions[i].MinSize;
}
return (desiredSize);
}
/// <summary>
/// Calculates and sets final size for all definitions in the given array.
/// </summary>
/// <param name="definitions">Array of definitions to process.</param>
/// <param name="finalSize">Final size to lay out to.</param>
/// <param name="columns">True if sizing row definitions, false for columns</param>
private void SetFinalSize(
DefinitionBase[] definitions,
double finalSize,
bool columns)
{
if (FrameworkAppContextSwitches.GridStarDefinitionsCanExceedAvailableSpace)
{
SetFinalSizeLegacy(definitions, finalSize, columns);
}
else
{
SetFinalSizeMaxDiscrepancy(definitions, finalSize, columns);
}
}
// original implementation, used from 3.0 through 4.6.2
private void SetFinalSizeLegacy(
DefinitionBase[] definitions,
double finalSize,
bool columns)
{
int starDefinitionsCount = 0; // traverses form the first entry up
int nonStarIndex = definitions.Length; // traverses from the last entry down
double allPreferredArrangeSize = 0;
bool useLayoutRounding = this.UseLayoutRounding;
int[] definitionIndices = DefinitionIndices;
double[] roundingErrors = null;
// If using layout rounding, check whether rounding needs to compensate for high DPI
double dpi = 1.0;
if (useLayoutRounding)
{
DpiScale dpiScale = GetDpi();
dpi = columns ? dpiScale.DpiScaleX : dpiScale.DpiScaleY;
roundingErrors = RoundingErrors;
}
for (int i = 0; i < definitions.Length; ++i)
{
// if definition is shared then is cannot be star
Debug.Assert(!definitions[i].IsShared || !definitions[i].UserSize.IsStar);
if (definitions[i].UserSize.IsStar)
{
double starValue = definitions[i].UserSize.Value;
if (_IsZero(starValue))
{
// cach normilized star value temporary into MeasureSize
definitions[i].MeasureSize = 0;
definitions[i].SizeCache = 0;
}
else
{
// clipping by c_starClip guarantees that sum of even a very big number of max'ed out star values
// can be summed up without overflow
starValue = Math.Min(starValue, c_starClip);
// Note: normalized star value is temporary cached into MeasureSize
definitions[i].MeasureSize = starValue;
double maxSize = Math.Max(definitions[i].MinSizeForArrange, definitions[i].UserMaxSize);
maxSize = Math.Min(maxSize, c_starClip);
definitions[i].SizeCache = maxSize / starValue;
if (useLayoutRounding)
{
roundingErrors[i] = definitions[i].SizeCache;
definitions[i].SizeCache = UIElement.RoundLayoutValue(definitions[i].SizeCache, dpi);
}
}
definitionIndices[starDefinitionsCount++] = i;
}
else
{
double userSize = 0;
switch (definitions[i].UserSize.GridUnitType)
{
case (GridUnitType.Pixel):
userSize = definitions[i].UserSize.Value;
break;
case (GridUnitType.Auto):
userSize = definitions[i].MinSizeForArrange;
break;
}
double userMaxSize;
if (definitions[i].IsShared)
{
// overriding userMaxSize effectively prevents squishy-ness.
// this is a "solution" to avoid shared definitions from been sized to
// different final size at arrange time, if / when different grids receive
// different final sizes.
userMaxSize = userSize;
}
else
{
userMaxSize = definitions[i].UserMaxSize;
}
definitions[i].SizeCache = Math.Max(definitions[i].MinSizeForArrange, Math.Min(userSize, userMaxSize));
if (useLayoutRounding)
{
roundingErrors[i] = definitions[i].SizeCache;
definitions[i].SizeCache = UIElement.RoundLayoutValue(definitions[i].SizeCache, dpi);
}
allPreferredArrangeSize += definitions[i].SizeCache;
definitionIndices[--nonStarIndex] = i;
}
}
// indices should meet
Debug.Assert(nonStarIndex == starDefinitionsCount);
if (starDefinitionsCount > 0)
{
Array.Sort(definitionIndices, 0, starDefinitionsCount, new StarDistributionOrderIndexComparer(definitions));
// the 'do {} while' loop below calculates sum of star weights in order to avoid fp overflow...
// partial sum value is stored in each definition's SizeCache member.
// this way the algorithm guarantees (starValue <= definition.SizeCache) and thus
// (starValue / definition.SizeCache) will never overflow due to sum of star weights becoming zero.
// this is an important change from previous implementation where the following was possible:
// ((BigValueStar + SmallValueStar) - BigValueStar) resulting in 0...
double allStarWeights = 0;
int i = starDefinitionsCount - 1;
do
{
allStarWeights += definitions[definitionIndices[i]].MeasureSize;
definitions[definitionIndices[i]].SizeCache = allStarWeights;
} while (--i >= 0);
i = 0;
do
{
double resolvedSize;
double starValue = definitions[definitionIndices[i]].MeasureSize;
if (_IsZero(starValue))
{
resolvedSize = definitions[definitionIndices[i]].MinSizeForArrange;
}
else
{
double userSize = Math.Max(finalSize - allPreferredArrangeSize, 0.0) * (starValue / definitions[definitionIndices[i]].SizeCache);
resolvedSize = Math.Min(userSize, definitions[definitionIndices[i]].UserMaxSize);
resolvedSize = Math.Max(definitions[definitionIndices[i]].MinSizeForArrange, resolvedSize);
}
definitions[definitionIndices[i]].SizeCache = resolvedSize;
if (useLayoutRounding)
{
roundingErrors[definitionIndices[i]] = definitions[definitionIndices[i]].SizeCache;
definitions[definitionIndices[i]].SizeCache = UIElement.RoundLayoutValue(definitions[definitionIndices[i]].SizeCache, dpi);
}
allPreferredArrangeSize += definitions[definitionIndices[i]].SizeCache;
} while (++i < starDefinitionsCount);
}
if ( allPreferredArrangeSize > finalSize
&& !_AreClose(allPreferredArrangeSize, finalSize) )
{
Array.Sort(definitionIndices, 0, definitions.Length, new DistributionOrderIndexComparer(definitions));
double sizeToDistribute = finalSize - allPreferredArrangeSize;
for (int i = 0; i < definitions.Length; ++i)
{
int definitionIndex = definitionIndices[i];
double final = definitions[definitionIndex].SizeCache + (sizeToDistribute / (definitions.Length - i));
double finalOld = final;
final = Math.Max(final, definitions[definitionIndex].MinSizeForArrange);
final = Math.Min(final, definitions[definitionIndex].SizeCache);
if (useLayoutRounding)
{
roundingErrors[definitionIndex] = final;
final = UIElement.RoundLayoutValue(finalOld, dpi);
final = Math.Max(final, definitions[definitionIndex].MinSizeForArrange);
final = Math.Min(final, definitions[definitionIndex].SizeCache);
}
sizeToDistribute -= (final - definitions[definitionIndex].SizeCache);
definitions[definitionIndex].SizeCache = final;
}
allPreferredArrangeSize = finalSize - sizeToDistribute;
}
if (useLayoutRounding)
{
if (!_AreClose(allPreferredArrangeSize, finalSize))
{
// Compute deltas
for (int i = 0; i < definitions.Length; ++i)
{
roundingErrors[i] = roundingErrors[i] - definitions[i].SizeCache;
definitionIndices[i] = i;
}
// Sort rounding errors
Array.Sort(definitionIndices, 0, definitions.Length, new RoundingErrorIndexComparer(roundingErrors));
double adjustedSize = allPreferredArrangeSize;
double dpiIncrement = UIElement.RoundLayoutValue(1.0, dpi);
if (allPreferredArrangeSize > finalSize)
{
int i = definitions.Length - 1;
while ((adjustedSize > finalSize && !_AreClose(adjustedSize, finalSize)) && i >= 0)
{
DefinitionBase definition = definitions[definitionIndices[i]];
double final = definition.SizeCache - dpiIncrement;
final = Math.Max(final, definition.MinSizeForArrange);
if (final < definition.SizeCache)
{
adjustedSize -= dpiIncrement;
}
definition.SizeCache = final;
i--;
}
}
else if (allPreferredArrangeSize < finalSize)
{
int i = 0;
while ((adjustedSize < finalSize && !_AreClose(adjustedSize, finalSize)) && i < definitions.Length)
{
DefinitionBase definition = definitions[definitionIndices[i]];
double final = definition.SizeCache + dpiIncrement;
final = Math.Max(final, definition.MinSizeForArrange);
if (final > definition.SizeCache)
{
adjustedSize += dpiIncrement;
}
definition.SizeCache = final;
i++;
}
}
}
}
definitions[0].FinalOffset = 0.0;
for (int i = 0; i < definitions.Length; ++i)
{
definitions[(i + 1) % definitions.Length].FinalOffset = definitions[i].FinalOffset + definitions[i].SizeCache;
}
}
// new implementation, as of 4.7. This incorporates the same algorithm
// as in ResolveStarMaxDiscrepancy. It differs in the same way that SetFinalSizeLegacy
// differs from ResolveStarLegacy, namely (a) leaves results in def.SizeCache
// instead of def.MeasureSize, (b) implements LayoutRounding if requested,
// (c) stores intermediate results differently.
// The LayoutRounding logic is improved:
// 1. Use pre-rounded values during proportional allocation. This avoids the
// same kind of problems arising from interaction with min/max that
// motivated the new algorithm in the first place.
// 2. Use correct "nudge" amount when distributing roundoff space. This
// comes into play at high DPI - greater than 134.
// 3. Applies rounding only to real pixel values (not to ratios)
private void SetFinalSizeMaxDiscrepancy(
DefinitionBase[] definitions,
double finalSize,
bool columns)
{
int defCount = definitions.Length;
int[] definitionIndices = DefinitionIndices;
int minCount = 0, maxCount = 0;
double takenSize = 0.0;
double totalStarWeight = 0.0;
int starCount = 0; // number of unresolved *-definitions
double scale = 1.0; // scale factor applied to each *-weight; negative means "Infinity is present"
// Phase 1. Determine the maximum *-weight and prepare to adjust *-weights
double maxStar = 0.0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.UserSize.IsStar)
{
++starCount;
def.MeasureSize = 1.0; // meaning "not yet resolved in phase 3"
if (def.UserSize.Value > maxStar)
{
maxStar = def.UserSize.Value;
}
}
}
if (Double.IsPositiveInfinity(maxStar))
{
// negative scale means one or more of the weights was Infinity
scale = -1.0;
}
else if (starCount > 0)
{
// if maxStar * starCount > Double.Max, summing all the weights could cause
// floating-point overflow. To avoid that, scale the weights by a factor to keep
// the sum within limits. Choose a power of 2, to preserve precision.
double power = Math.Floor(Math.Log(Double.MaxValue / maxStar / starCount, 2.0));
if (power < 0.0)
{
scale = Math.Pow(2.0, power - 4.0); // -4 is just for paranoia
}
}
// normally Phases 2 and 3 execute only once. But certain unusual combinations of weights
// and constraints can defeat the algorithm, in which case we repeat Phases 2 and 3.
// More explanation below...
for (bool runPhase2and3=true; runPhase2and3; )
{
// Phase 2. Compute total *-weight W and available space S.
// For *-items that have Min or Max constraints, compute the ratios used to decide
// whether proportional space is too big or too small and add the item to the
// corresponding list. (The "min" list is in the first half of definitionIndices,
// the "max" list in the second half. DefinitionIndices has capacity at least
// 2*defCount, so there's room for both lists.)
totalStarWeight = 0.0;
takenSize = 0.0;
minCount = maxCount = 0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.UserSize.IsStar)
{
Debug.Assert(!def.IsShared, "*-defs cannot be shared");
if (def.MeasureSize < 0.0)
{
takenSize += -def.MeasureSize; // already resolved
}
else
{
double starWeight = StarWeight(def, scale);
totalStarWeight += starWeight;
if (def.MinSizeForArrange > 0.0)
{
// store ratio w/min in MeasureSize (for now)
definitionIndices[minCount++] = i;
def.MeasureSize = starWeight / def.MinSizeForArrange;
}
double effectiveMaxSize = Math.Max(def.MinSizeForArrange, def.UserMaxSize);
if (!Double.IsPositiveInfinity(effectiveMaxSize))
{
// store ratio w/max in SizeCache (for now)
definitionIndices[defCount + maxCount++] = i;
def.SizeCache = starWeight / effectiveMaxSize;
}
}
}
else
{
double userSize = 0;
switch (def.UserSize.GridUnitType)
{
case (GridUnitType.Pixel):
userSize = def.UserSize.Value;
break;
case (GridUnitType.Auto):
userSize = def.MinSizeForArrange;
break;
}
double userMaxSize;
if (def.IsShared)
{
// overriding userMaxSize effectively prevents squishy-ness.
// this is a "solution" to avoid shared definitions from been sized to
// different final size at arrange time, if / when different grids receive
// different final sizes.
userMaxSize = userSize;
}
else
{
userMaxSize = def.UserMaxSize;
}
def.SizeCache = Math.Max(def.MinSizeForArrange, Math.Min(userSize, userMaxSize));
takenSize += def.SizeCache;
}
}
// Phase 3. Resolve *-items whose proportional sizes are too big or too small.
int minCountPhase2 = minCount, maxCountPhase2 = maxCount;
double takenStarWeight = 0.0;
double remainingAvailableSize = finalSize - takenSize;
double remainingStarWeight = totalStarWeight - takenStarWeight;
Array.Sort(definitionIndices, 0, minCount, new MinRatioIndexComparer(definitions));
Array.Sort(definitionIndices, defCount, maxCount, new MaxRatioIndexComparer(definitions));
while (minCount + maxCount > 0 && remainingAvailableSize > 0.0)
{
// the calculation
// remainingStarWeight = totalStarWeight - takenStarWeight
// is subject to catastrophic cancellation if the two terms are nearly equal,
// which leads to meaningless results. Check for that, and recompute from
// the remaining definitions. [This leads to quadratic behavior in really
// pathological cases - but they'd never arise in practice.]
const double starFactor = 1.0 / 256.0; // lose more than 8 bits of precision -> recalculate
if (remainingStarWeight < totalStarWeight * starFactor)
{
takenStarWeight = 0.0;
totalStarWeight = 0.0;
for (int i = 0; i < defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.UserSize.IsStar && def.MeasureSize > 0.0)
{
totalStarWeight += StarWeight(def, scale);
}
}
remainingStarWeight = totalStarWeight - takenStarWeight;
}
double minRatio = (minCount > 0) ? definitions[definitionIndices[minCount - 1]].MeasureSize : Double.PositiveInfinity;
double maxRatio = (maxCount > 0) ? definitions[definitionIndices[defCount + maxCount - 1]].SizeCache : -1.0;
// choose the def with larger ratio to the current proportion ("max discrepancy")
double proportion = remainingStarWeight / remainingAvailableSize;
bool? chooseMin = Choose(minRatio, maxRatio, proportion);
// if no def was chosen, advance to phase 4; the current proportion doesn't
// conflict with any min or max values.
if (!(chooseMin.HasValue))
{
break;
}
// get the chosen definition and its resolved size
int resolvedIndex;
DefinitionBase resolvedDef;
double resolvedSize;
if (chooseMin == true)
{
resolvedIndex = definitionIndices[minCount - 1];
resolvedDef = definitions[resolvedIndex];
resolvedSize = resolvedDef.MinSizeForArrange;
--minCount;
}
else
{
resolvedIndex = definitionIndices[defCount + maxCount - 1];
resolvedDef = definitions[resolvedIndex];
resolvedSize = Math.Max(resolvedDef.MinSizeForArrange, resolvedDef.UserMaxSize);
--maxCount;
}
// resolve the chosen def, deduct its contributions from W and S.
// Defs resolved in phase 3 are marked by storing the negative of their resolved
// size in MeasureSize, to distinguish them from a pending def.
takenSize += resolvedSize;
resolvedDef.MeasureSize = -resolvedSize;
takenStarWeight += StarWeight(resolvedDef, scale);
--starCount;
remainingAvailableSize = finalSize - takenSize;
remainingStarWeight = totalStarWeight - takenStarWeight;
// advance to the next candidate defs, removing ones that have been resolved.
// Both counts are advanced, as a def might appear in both lists.
while (minCount > 0 && definitions[definitionIndices[minCount - 1]].MeasureSize < 0.0)
{
--minCount;
definitionIndices[minCount] = -1;
}
while (maxCount > 0 && definitions[definitionIndices[defCount + maxCount - 1]].MeasureSize < 0.0)
{
--maxCount;
definitionIndices[defCount + maxCount] = -1;
}
}
// decide whether to run Phase2 and Phase3 again. There are 3 cases:
// 1. There is space available, and *-defs remaining. This is the
// normal case - move on to Phase 4 to allocate the remaining
// space proportionally to the remaining *-defs.
// 2. There is space available, but no *-defs. This implies at least one
// def was resolved as 'max', taking less space than its proportion.
// If there are also 'min' defs, reconsider them - we can give
// them more space. If not, all the *-defs are 'max', so there's
// no way to use all the available space.
// 3. We allocated too much space. This implies at least one def was
// resolved as 'min'. If there are also 'max' defs, reconsider
// them, otherwise the over-allocation is an inevitable consequence
// of the given min constraints.
// Note that if we return to Phase2, at least one *-def will have been
// resolved. This guarantees we don't run Phase2+3 infinitely often.
runPhase2and3 = false;
if(takenSize < finalSize)
{
if(DoubleUtil.AreClose(takenSize, finalSize) && minCountPhase2 > 0)
{
// if very small (~ 2.2204460492503131e-016) remaining size is available
// adding it to size of smallest width column resolved as 'min'.
DefinitionBase resolvedDef = definitions[definitionIndices[minCountPhase2 - 1]];
resolvedDef.MeasureSize -= (finalSize - takenSize);
takenSize = finalSize;
remainingAvailableSize = 0.0;
}
}
if (starCount == 0 && takenSize < finalSize)
{
// if no *-defs remain and we haven't allocated all the space, reconsider the defs
// resolved as 'min'. Their allocation can be increased to make up the gap.
for (int i = minCount; i < minCountPhase2; ++i)
{
if (definitionIndices[i] >= 0)
{
DefinitionBase def = definitions[definitionIndices[i]];
def.MeasureSize = 1.0; // mark as 'not yet resolved'
++starCount;
runPhase2and3 = true; // found a candidate, so re-run Phases 2 and 3
}
}
}
if (takenSize > finalSize)
{
// if we've allocated too much space, reconsider the defs
// resolved as 'max'. Their allocation can be decreased to make up the gap.
for (int i = maxCount; i < maxCountPhase2; ++i)
{
if (definitionIndices[defCount + i] >= 0)
{
DefinitionBase def = definitions[definitionIndices[defCount + i]];
def.MeasureSize = 1.0; // mark as 'not yet resolved'
++starCount;
runPhase2and3 = true; // found a candidate, so re-run Phases 2 and 3
}
}
}
}
// Phase 4. Resolve the remaining defs proportionally.
starCount = 0;
for (int i=0; i<defCount; ++i)
{
DefinitionBase def = definitions[i];
if (def.UserSize.IsStar)
{
if (def.MeasureSize < 0.0)
{
// this def was resolved in phase 3 - fix up its size
def.SizeCache = -def.MeasureSize;
}
else
{
// this def needs resolution, add it to the list, sorted by *-weight
definitionIndices[starCount++] = i;
def.MeasureSize = StarWeight(def, scale);
}
}
}
if (starCount > 0)
{
Array.Sort(definitionIndices, 0, starCount, new StarWeightIndexComparer(definitions));
// compute the partial sums of *-weight, in increasing order of weight
// for minimal loss of precision.
totalStarWeight = 0.0;
for (int i = 0; i < starCount; ++i)
{
DefinitionBase def = definitions[definitionIndices[i]];
totalStarWeight += def.MeasureSize;
def.SizeCache = totalStarWeight;
}
// resolve the defs, in decreasing order of weight.
for (int i = starCount - 1; i >= 0; --i)
{
DefinitionBase def = definitions[definitionIndices[i]];
double resolvedSize = (def.MeasureSize > 0.0) ? Math.Max(finalSize - takenSize, 0.0) * (def.MeasureSize / def.SizeCache) : 0.0;
// min and max should have no effect by now, but just in case...
resolvedSize = Math.Min(resolvedSize, def.UserMaxSize);
resolvedSize = Math.Max(def.MinSizeForArrange, resolvedSize);
// Use the raw (unrounded) sizes to update takenSize, so that
// proportions are computed in the same terms as in phase 3;
// this avoids errors arising from min/max constraints.
takenSize += resolvedSize;
def.SizeCache = resolvedSize;
}
}
// Phase 5. Apply layout rounding. We do this after fully allocating
// unrounded sizes, to avoid breaking assumptions in the previous phases
if (UseLayoutRounding)
{
DpiScale dpiScale = GetDpi();
double dpi = columns ? dpiScale.DpiScaleX : dpiScale.DpiScaleY;
double[] roundingErrors = RoundingErrors;
double roundedTakenSize = 0.0;
// round each of the allocated sizes, keeping track of the deltas
for (int i = 0; i < definitions.Length; ++i)
{
DefinitionBase def = definitions[i];
double roundedSize = UIElement.RoundLayoutValue(def.SizeCache, dpi);
roundingErrors[i] = (roundedSize - def.SizeCache);
def.SizeCache = roundedSize;
roundedTakenSize += roundedSize;
}
// The total allocation might differ from finalSize due to rounding
// effects. Tweak the allocations accordingly.
// Theoretical and historical note. The problem at hand - allocating
// space to columns (or rows) with *-weights, min and max constraints,
// and layout rounding - has a long history. Especially the special
// case of 50 columns with min=1 and available space=435 - allocating
// seats in the U.S. House of Representatives to the 50 states in
// proportion to their population. There are numerous algorithms
// and papers dating back to the 1700's, including the book:
// Balinski, M. and H. Young, Fair Representation, Yale University Press, New Haven, 1982.
//
// One surprising result of all this research is that *any* algorithm
// will suffer from one or more undesirable features such as the
// "population paradox" or the "Alabama paradox", where (to use our terminology)
// increasing the available space by one pixel might actually decrease
// the space allocated to a given column, or increasing the weight of
// a column might decrease its allocation. This is worth knowing
// in case someone complains about this behavior; it's not a bug so
// much as something inherent to the problem. Cite the book mentioned
// above or one of the 100s of references, and resolve as WontFix.
//
// Fortunately, our scenarios tend to have a small number of columns (~10 or fewer)
// each being allocated a large number of pixels (~50 or greater), and
// people don't even notice the kind of 1-pixel anomolies that are
// theoretically inevitable, or don't care if they do. At least they shouldn't
// care - no one should be using the results WPF's grid layout to make
// quantitative decisions; its job is to produce a reasonable display, not
// to allocate seats in Congress.
//
// Our algorithm is more susceptible to paradox than the one currently
// used for Congressional allocation ("Huntington-Hill" algorithm), but
// it is faster to run: O(N log N) vs. O(S * N), where N=number of
// definitions, S = number of available pixels. And it produces
// adequate results in practice, as mentioned above.
//
// To reiterate one point: all this only applies when layout rounding
// is in effect. When fractional sizes are allowed, the algorithm
// behaves as well as possible, subject to the min/max constraints
// and precision of floating-point computation. (However, the resulting
// display is subject to anti-aliasing problems. TANSTAAFL.)
if (!_AreClose(roundedTakenSize, finalSize))
{
// Compute deltas
for (int i = 0; i < definitions.Length; ++i)
{
definitionIndices[i] = i;
}
// Sort rounding errors
Array.Sort(definitionIndices, 0, definitions.Length, new RoundingErrorIndexComparer(roundingErrors));
double adjustedSize = roundedTakenSize;
double dpiIncrement = 1.0/dpi;
if (roundedTakenSize > finalSize)
{
int i = definitions.Length - 1;
while ((adjustedSize > finalSize && !_AreClose(adjustedSize, finalSize)) && i >= 0)
{
DefinitionBase definition = definitions[definitionIndices[i]];
double final = definition.SizeCache - dpiIncrement;
final = Math.Max(final, definition.MinSizeForArrange);
if (final < definition.SizeCache)
{
adjustedSize -= dpiIncrement;
}
definition.SizeCache = final;
i--;
}
}
else if (roundedTakenSize < finalSize)
{
int i = 0;
while ((adjustedSize < finalSize && !_AreClose(adjustedSize, finalSize)) && i < definitions.Length)
{
DefinitionBase definition = definitions[definitionIndices[i]];
double final = definition.SizeCache + dpiIncrement;
final = Math.Max(final, definition.MinSizeForArrange);
if (final > definition.SizeCache)
{
adjustedSize += dpiIncrement;
}
definition.SizeCache = final;
i++;
}
}
}
}
// Phase 6. Compute final offsets
definitions[0].FinalOffset = 0.0;
for (int i = 0; i < definitions.Length; ++i)
{
definitions[(i + 1) % definitions.Length].FinalOffset = definitions[i].FinalOffset + definitions[i].SizeCache;
}
}
/// <summary>
/// Choose the ratio with maximum discrepancy from the current proportion.
/// Returns:
/// true if proportion fails a min constraint but not a max, or
/// if the min constraint has higher discrepancy
/// false if proportion fails a max constraint but not a min, or
/// if the max constraint has higher discrepancy
/// null if proportion doesn't fail a min or max constraint
/// The discrepancy is the ratio of the proportion to the max- or min-ratio.
/// When both ratios hit the constraint, minRatio < proportion < maxRatio,
/// and the minRatio has higher discrepancy if
/// (proportion / minRatio) > (maxRatio / proportion)
/// </summary>
private static bool? Choose(double minRatio, double maxRatio, double proportion)
{
if (minRatio < proportion)
{
if (maxRatio > proportion)
{
// compare proportion/minRatio : maxRatio/proportion, but
// do it carefully to avoid floating-point overflow or underflow
// and divide-by-0.
double minPower = Math.Floor(Math.Log(minRatio, 2.0));
double maxPower = Math.Floor(Math.Log(maxRatio, 2.0));
double f = Math.Pow(2.0, Math.Floor((minPower + maxPower) / 2.0));
if ((proportion / f) * (proportion / f) > (minRatio / f) * (maxRatio / f))
{
return true;
}
else
{
return false;
}
}
else
{
return true;
}
}
else if (maxRatio > proportion)
{
return false;
}
return null;
}
/// <summary>
/// Sorts row/column indices by rounding error if layout rounding is applied.
/// </summary>
/// <param name="x">Index, rounding error pair</param>
/// <param name="y">Index, rounding error pair</param>
/// <returns>1 if x.Value > y.Value, 0 if equal, -1 otherwise</returns>
private static int CompareRoundingErrors(KeyValuePair<int, double> x, KeyValuePair<int, double> y)
{
if (x.Value < y.Value)
{
return -1;
}
else if (x.Value > y.Value)
{
return 1;
}
return 0;
}
/// <summary>
/// Calculates final (aka arrange) size for given range.
/// </summary>
/// <param name="definitions">Array of definitions to process.</param>
/// <param name="start">Start of the range.</param>
/// <param name="count">Number of items in the range.</param>
/// <returns>Final size.</returns>
private double GetFinalSizeForRange(
DefinitionBase[] definitions,
int start,
int count)
{
double size = 0;
int i = start + count - 1;
do
{
size += definitions[i].SizeCache;
} while (--i >= start);
return (size);
}
/// <summary>
/// Clears dirty state for the grid and its columns / rows
/// </summary>
private void SetValid()
{
ExtendedData extData = ExtData;
if (extData != null)
{
// for (int i = 0; i < PrivateColumnCount; ++i) DefinitionsU[i].SetValid ();
// for (int i = 0; i < PrivateRowCount; ++i) DefinitionsV[i].SetValid ();
if (extData.TempDefinitions != null)
{
// TempDefinitions has to be cleared to avoid "memory leaks"
Array.Clear(extData.TempDefinitions, 0, Math.Max(DefinitionsU.Length, DefinitionsV.Length));
extData.TempDefinitions = null;
}
}
}
/// <summary>
/// Returns <c>true</c> if ColumnDefinitions collection is not empty
/// </summary>
[EditorBrowsable(EditorBrowsableState.Never)]
public bool ShouldSerializeColumnDefinitions()
{
ExtendedData extData = ExtData;
return ( extData != null
&& extData.ColumnDefinitions != null
&& extData.ColumnDefinitions.Count > 0 );
}
/// <summary>
/// Returns <c>true</c> if RowDefinitions collection is not empty
/// </summary>
[EditorBrowsable(EditorBrowsableState.Never)]
public bool ShouldSerializeRowDefinitions()
{
ExtendedData extData = ExtData;
return ( extData != null
&& extData.RowDefinitions != null
&& extData.RowDefinitions.Count > 0 );
}
/// <summary>
/// Synchronized ShowGridLines property with the state of the grid's visual collection
/// by adding / removing GridLinesRenderer visual.
/// Returns a reference to GridLinesRenderer visual or null.
/// </summary>
private GridLinesRenderer EnsureGridLinesRenderer()
{
//
// synchronize the state
//
if (ShowGridLines && (_gridLinesRenderer == null))
{
_gridLinesRenderer = new GridLinesRenderer();
this.AddVisualChild(_gridLinesRenderer);
}
if ((!ShowGridLines) && (_gridLinesRenderer != null))
{
this.RemoveVisualChild(_gridLinesRenderer);
_gridLinesRenderer = null;
}
return (_gridLinesRenderer);
}
/// <summary>
/// SetFlags is used to set or unset one or multiple
/// flags on the object.
/// </summary>
private void SetFlags(bool value, Flags flags)
{
_flags = value ? (_flags | flags) : (_flags & (~flags));
}
/// <summary>
/// CheckFlagsAnd returns <c>true</c> if all the flags in the
/// given bitmask are set on the object.
/// </summary>
private bool CheckFlagsAnd(Flags flags)
{
return ((_flags & flags) == flags);
}
/// <summary>
/// CheckFlagsOr returns <c>true</c> if at least one flag in the
/// given bitmask is set.
/// </summary>
/// <remarks>
/// If no bits are set in the given bitmask, the method returns
/// <c>true</c>.
/// </remarks>
private bool CheckFlagsOr(Flags flags)
{
return (flags == 0 || (_flags & flags) != 0);
}
/// <summary>
/// <see cref="PropertyMetadata.PropertyChangedCallback"/>
/// </summary>
private static void OnShowGridLinesPropertyChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)
{
Grid grid = (Grid)d;
if ( grid.ExtData != null // trivial grid is 1 by 1. there is no grid lines anyway
&& grid.ListenToNotifications)
{
grid.InvalidateVisual();
}
grid.SetFlags((bool) e.NewValue, Flags.ShowGridLinesPropertyValue);
}
/// <summary>
/// <see cref="PropertyMetadata.PropertyChangedCallback"/>
/// </summary>
private static void OnCellAttachedPropertyChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)
{
Visual child = d as Visual;
if (child != null)
{
Grid grid = VisualTreeHelper.GetParent(child) as Grid;
if ( grid != null
&& grid.ExtData != null
&& grid.ListenToNotifications )
{
grid.CellsStructureDirty = true;
grid.InvalidateMeasure();
}
}
}
/// <summary>
/// <see cref="DependencyProperty.ValidateValueCallback"/>
/// </summary>
private static bool IsIntValueNotNegative(object value)
{
return ((int)value >= 0);
}
/// <summary>
/// <see cref="DependencyProperty.ValidateValueCallback"/>
/// </summary>
private static bool IsIntValueGreaterThanZero(object value)
{
return ((int)value > 0);
}
/// <summary>
/// Helper for Comparer methods.
/// </summary>
/// <returns>
/// true iff one or both of x and y are null, in which case result holds
/// the relative sort order.
/// </returns>
private static bool CompareNullRefs(object x, object y, out int result)
{
result = 2;
if (x == null)
{
if (y == null)
{
result = 0;
}
else
{
result = -1;
}
}
else
{
if (y == null)
{
result = 1;
}
}
return (result != 2);
}
#endregion Private Methods
//------------------------------------------------------
//
// Private Properties
//
//------------------------------------------------------
#region Private Properties
/// <summary>
/// Private version returning array of column definitions.
/// </summary>
private DefinitionBase[] DefinitionsU
{
get { return (ExtData.DefinitionsU); }
}
/// <summary>
/// Private version returning array of row definitions.
/// </summary>
private DefinitionBase[] DefinitionsV
{
get { return (ExtData.DefinitionsV); }
}
/// <summary>
/// Helper accessor to layout time array of definitions.
/// </summary>
private DefinitionBase[] TempDefinitions
{
get
{
ExtendedData extData = ExtData;
int requiredLength = Math.Max(DefinitionsU.Length, DefinitionsV.Length) * 2;
if ( extData.TempDefinitions == null
|| extData.TempDefinitions.Length < requiredLength )
{
WeakReference tempDefinitionsWeakRef = (WeakReference)Thread.GetData(s_tempDefinitionsDataSlot);
if (tempDefinitionsWeakRef == null)
{
extData.TempDefinitions = new DefinitionBase[requiredLength];
Thread.SetData(s_tempDefinitionsDataSlot, new WeakReference(extData.TempDefinitions));
}
else
{
extData.TempDefinitions = (DefinitionBase[])tempDefinitionsWeakRef.Target;
if ( extData.TempDefinitions == null
|| extData.TempDefinitions.Length < requiredLength )
{
extData.TempDefinitions = new DefinitionBase[requiredLength];
tempDefinitionsWeakRef.Target = extData.TempDefinitions;
}
}
}
return (extData.TempDefinitions);
}
}
/// <summary>
/// Helper accessor to definition indices.
/// </summary>
private int[] DefinitionIndices
{
get
{
int requiredLength = Math.Max(Math.Max(DefinitionsU.Length, DefinitionsV.Length), 1) * 2;
if (_definitionIndices == null || _definitionIndices.Length < requiredLength)
{
_definitionIndices = new int[requiredLength];
}
return _definitionIndices;
}
}
/// <summary>
/// Helper accessor to rounding errors.
/// </summary>
private double[] RoundingErrors
{
get
{
int requiredLength = Math.Max(DefinitionsU.Length, DefinitionsV.Length);
if (_roundingErrors == null && requiredLength == 0)
{
_roundingErrors = new double[1];
}
else if (_roundingErrors == null || _roundingErrors.Length < requiredLength)
{
_roundingErrors = new double[requiredLength];
}
return _roundingErrors;
}
}
/// <summary>
/// Private version returning array of cells.
/// </summary>
private CellCache[] PrivateCells
{
get { return (ExtData.CellCachesCollection); }
}
/// <summary>
/// Convenience accessor to ValidCellsStructure bit flag.
/// </summary>
private bool CellsStructureDirty
{
get { return (!CheckFlagsAnd(Flags.ValidCellsStructure)); }
set { SetFlags(!value, Flags.ValidCellsStructure); }
}
/// <summary>
/// Convenience accessor to ListenToNotifications bit flag.
/// </summary>
private bool ListenToNotifications
{
get { return (CheckFlagsAnd(Flags.ListenToNotifications)); }
set { SetFlags(value, Flags.ListenToNotifications); }
}
/// <summary>
/// Convenience accessor to SizeToContentU bit flag.
/// </summary>
private bool SizeToContentU
{
get { return (CheckFlagsAnd(Flags.SizeToContentU)); }
set { SetFlags(value, Flags.SizeToContentU); }
}
/// <summary>
/// Convenience accessor to SizeToContentV bit flag.
/// </summary>
private bool SizeToContentV
{
get { return (CheckFlagsAnd(Flags.SizeToContentV)); }
set { SetFlags(value, Flags.SizeToContentV); }
}
/// <summary>
/// Convenience accessor to HasStarCellsU bit flag.
/// </summary>
private bool HasStarCellsU
{
get { return (CheckFlagsAnd(Flags.HasStarCellsU)); }
set { SetFlags(value, Flags.HasStarCellsU); }
}
/// <summary>
/// Convenience accessor to HasStarCellsV bit flag.
/// </summary>
private bool HasStarCellsV
{
get { return (CheckFlagsAnd(Flags.HasStarCellsV)); }
set { SetFlags(value, Flags.HasStarCellsV); }
}
/// <summary>
/// Convenience accessor to HasGroup3CellsInAutoRows bit flag.
/// </summary>
private bool HasGroup3CellsInAutoRows
{
get { return (CheckFlagsAnd(Flags.HasGroup3CellsInAutoRows)); }
set { SetFlags(value, Flags.HasGroup3CellsInAutoRows); }
}
/// <summary>
/// fp version of <c>d == 0</c>.
/// </summary>
/// <param name="d">Value to check.</param>
/// <returns><c>true</c> if d == 0.</returns>
private static bool _IsZero(double d)
{
return (Math.Abs(d) < c_epsilon);
}
/// <summary>
/// fp version of <c>d1 == d2</c>
/// </summary>
/// <param name="d1">First value to compare</param>
/// <param name="d2">Second value to compare</param>
/// <returns><c>true</c> if d1 == d2</returns>
private static bool _AreClose(double d1, double d2)
{
return (Math.Abs(d1 - d2) < c_epsilon);
}
/// <summary>
/// Returns reference to extended data bag.
/// </summary>
private ExtendedData ExtData
{
get { return (_data); }
}
/// <summary>
/// Returns *-weight, adjusted for scale computed during Phase 1
/// </summary>
static double StarWeight(DefinitionBase def, double scale)
{
if (scale < 0.0)
{
// if one of the *-weights is Infinity, adjust the weights by mapping
// Infinty to 1.0 and everything else to 0.0: the infinite items share the
// available space equally, everyone else gets nothing.
return (Double.IsPositiveInfinity(def.UserSize.Value)) ? 1.0 : 0.0;
}
else
{
return def.UserSize.Value * scale;
}
}
#endregion Private Properties
//------------------------------------------------------
//
// Private Fields
//
//------------------------------------------------------
#region Private Fields
private ExtendedData _data; // extended data instantiated on demand, for non-trivial case handling only
private Flags _flags; // grid validity / property caches dirtiness flags
private GridLinesRenderer _gridLinesRenderer;
// Keeps track of definition indices.
int[] _definitionIndices;
// Stores unrounded values and rounding errors during layout rounding.
double[] _roundingErrors;
#endregion Private Fields
//------------------------------------------------------
//
// Static Fields
//
//------------------------------------------------------
#region Static Fields
private const double c_epsilon = 1e-5; // used in fp calculations
private const double c_starClip = 1e298; // used as maximum for clipping star values during normalization
private const int c_layoutLoopMaxCount = 5; // 5 is an arbitrary constant chosen to end the measure loop
private static readonly LocalDataStoreSlot s_tempDefinitionsDataSlot = Thread.AllocateDataSlot();
private static readonly Comparison<DefinitionBase> s_spanPreferredDistributionOrderComparer = SpanPreferredDistributionOrderComparer;
private static readonly Comparison<DefinitionBase> s_spanMaxDistributionOrderComparer = SpanMaxDistributionOrderComparer;
private static readonly Comparison<DefinitionBase> s_starDistributionOrderComparer = StarDistributionOrderComparer;
private static readonly Comparison<DefinitionBase> s_minRatioComparer = MinRatioComparer;
private static readonly Comparison<DefinitionBase> s_maxRatioComparer = MaxRatioComparer;
private static readonly Comparison<DefinitionBase> s_starWeightComparer = StarWeightComparer;
#endregion Static Fields
//------------------------------------------------------
//
// Private Structures / Classes
//
//------------------------------------------------------
#region Private Structures Classes
/// <summary>
/// Extended data instantiated on demand, when grid handles non-trivial case.
/// </summary>
private class ExtendedData
{
internal ColumnDefinitionCollection ColumnDefinitions; // collection of column definitions (logical tree support)
internal RowDefinitionCollection RowDefinitions; // collection of row definitions (logical tree support)
internal DefinitionBase[] DefinitionsU; // collection of column definitions used during calc
internal DefinitionBase[] DefinitionsV; // collection of row definitions used during calc
internal CellCache[] CellCachesCollection; // backing store for logical children
internal int CellGroup1; // index of the first cell in first cell group
internal int CellGroup2; // index of the first cell in second cell group
internal int CellGroup3; // index of the first cell in third cell group
internal int CellGroup4; // index of the first cell in forth cell group
internal DefinitionBase[] TempDefinitions; // temporary array used during layout for various purposes
// TempDefinitions.Length == Max(definitionsU.Length, definitionsV.Length)
}
/// <summary>
/// Grid validity / property caches dirtiness flags
/// </summary>
[System.Flags]
private enum Flags
{
//
// the foolowing flags let grid tracking dirtiness in more granular manner:
// * Valid???Structure flags indicate that elements were added or removed.
// * Valid???Layout flags indicate that layout time portion of the information
// stored on the objects should be updated.
//
ValidDefinitionsUStructure = 0x00000001,
ValidDefinitionsVStructure = 0x00000002,
ValidCellsStructure = 0x00000004,
//
// boolean properties state
//
ShowGridLinesPropertyValue = 0x00000100, // show grid lines ?
//
// boolean flags
//
ListenToNotifications = 0x00001000, // "0" when all notifications are ignored
SizeToContentU = 0x00002000, // "1" if calculating to content in U direction
SizeToContentV = 0x00004000, // "1" if calculating to content in V direction
HasStarCellsU = 0x00008000, // "1" if at least one cell belongs to a Star column
HasStarCellsV = 0x00010000, // "1" if at least one cell belongs to a Star row
HasGroup3CellsInAutoRows = 0x00020000, // "1" if at least one cell of group 3 belongs to an Auto row
MeasureOverrideInProgress = 0x00040000, // "1" while in the context of Grid.MeasureOverride
ArrangeOverrideInProgress = 0x00080000, // "1" while in the context of Grid.ArrangeOverride
}
#endregion Private Structures Classes
//------------------------------------------------------
//
// Properties
//
//------------------------------------------------------
#region Properties
/// <summary>
/// ShowGridLines property. This property is used mostly
/// for simplification of visual debuggig. When it is set
/// to <c>true</c> grid lines are drawn to visualize location
/// of grid lines.
/// </summary>
public static readonly DependencyProperty ShowGridLinesProperty =
DependencyProperty.Register(
"ShowGridLines",
typeof(bool),
typeof(Grid),
new FrameworkPropertyMetadata(
false,
new PropertyChangedCallback(OnShowGridLinesPropertyChanged)));
/// <summary>
/// Column property. This is an attached property.
/// Grid defines Column property, so that it can be set
/// on any element treated as a cell. Column property
/// specifies child's position with respect to columns.
/// </summary>
/// <remarks>
/// <para> Columns are 0 - based. In order to appear in first column, element
/// should have Column property set to <c>0</c>. </para>
/// <para> Default value for the property is <c>0</c>. </para>
/// </remarks>
[CommonDependencyProperty]
public static readonly DependencyProperty ColumnProperty =
DependencyProperty.RegisterAttached(
"Column",
typeof(int),
typeof(Grid),
new FrameworkPropertyMetadata(
0,
new PropertyChangedCallback(OnCellAttachedPropertyChanged)),
new ValidateValueCallback(IsIntValueNotNegative));
/// <summary>
/// Row property. This is an attached property.
/// Grid defines Row, so that it can be set
/// on any element treated as a cell. Row property
/// specifies child's position with respect to rows.
/// <remarks>
/// <para> Rows are 0 - based. In order to appear in first row, element
/// should have Row property set to <c>0</c>. </para>
/// <para> Default value for the property is <c>0</c>. </para>
/// </remarks>
/// </summary>
[CommonDependencyProperty]
public static readonly DependencyProperty RowProperty =
DependencyProperty.RegisterAttached(
"Row",
typeof(int),
typeof(Grid),
new FrameworkPropertyMetadata(
0,
new PropertyChangedCallback(OnCellAttachedPropertyChanged)),
new ValidateValueCallback(IsIntValueNotNegative));
/// <summary>
/// ColumnSpan property. This is an attached property.
/// Grid defines ColumnSpan, so that it can be set
/// on any element treated as a cell. ColumnSpan property
/// specifies child's width with respect to columns.
/// Example, ColumnSpan == 2 means that child will span across two columns.
/// </summary>
/// <remarks>
/// Default value for the property is <c>1</c>.
/// </remarks>
[CommonDependencyProperty]
public static readonly DependencyProperty ColumnSpanProperty =
DependencyProperty.RegisterAttached(
"ColumnSpan",
typeof(int),
typeof(Grid),
new FrameworkPropertyMetadata(
1,
new PropertyChangedCallback(OnCellAttachedPropertyChanged)),
new ValidateValueCallback(IsIntValueGreaterThanZero));
/// <summary>
/// RowSpan property. This is an attached property.
/// Grid defines RowSpan, so that it can be set
/// on any element treated as a cell. RowSpan property
/// specifies child's height with respect to row grid lines.
/// Example, RowSpan == 3 means that child will span across three rows.
/// </summary>
/// <remarks>
/// Default value for the property is <c>1</c>.
/// </remarks>
[CommonDependencyProperty]
public static readonly DependencyProperty RowSpanProperty =
DependencyProperty.RegisterAttached(
"RowSpan",
typeof(int),
typeof(Grid),
new FrameworkPropertyMetadata(
1,
new PropertyChangedCallback(OnCellAttachedPropertyChanged)),
new ValidateValueCallback(IsIntValueGreaterThanZero));
/// <summary>
/// IsSharedSizeScope property marks scoping element for shared size.
/// </summary>
public static readonly DependencyProperty IsSharedSizeScopeProperty =
DependencyProperty.RegisterAttached(
"IsSharedSizeScope",
typeof(bool),
typeof(Grid),
new FrameworkPropertyMetadata(
false,
new PropertyChangedCallback(DefinitionBase.OnIsSharedSizeScopePropertyChanged)));
#endregion Properties
//------------------------------------------------------
//
// Internal Structures / Classes
//
//------------------------------------------------------
#region Internal Structures Classes
/// <summary>
/// LayoutTimeSizeType is used internally and reflects layout-time size type.
/// </summary>
[System.Flags]
internal enum LayoutTimeSizeType : byte
{
None = 0x00,
Pixel = 0x01,
Auto = 0x02,
Star = 0x04,
}
#endregion Internal Structures Classes
//------------------------------------------------------
//
// Private Structures / Classes
//
//------------------------------------------------------
#region Private Structures Classes
/// <summary>
/// CellCache stored calculated values of
/// 1. attached cell positioning properties;
/// 2. size type;
/// 3. index of a next cell in the group;
/// </summary>
private struct CellCache
{
internal int ColumnIndex;
internal int RowIndex;
internal int ColumnSpan;
internal int RowSpan;
internal LayoutTimeSizeType SizeTypeU;
internal LayoutTimeSizeType SizeTypeV;
internal int Next;
internal bool IsStarU { get { return ((SizeTypeU & LayoutTimeSizeType.Star) != 0); } }
internal bool IsAutoU { get { return ((SizeTypeU & LayoutTimeSizeType.Auto) != 0); } }
internal bool IsStarV { get { return ((SizeTypeV & LayoutTimeSizeType.Star) != 0); } }
internal bool IsAutoV { get { return ((SizeTypeV & LayoutTimeSizeType.Auto) != 0); } }
}
/// <summary>
/// Helper class for representing a key for a span in hashtable.
/// </summary>
private class SpanKey
{
/// <summary>
/// Constructor.
/// </summary>
/// <param name="start">Starting index of the span.</param>
/// <param name="count">Span count.</param>
/// <param name="u"><c>true</c> for columns; <c>false</c> for rows.</param>
internal SpanKey(int start, int count, bool u)
{
_start = start;
_count = count;
_u = u;
}
/// <summary>
/// <see cref="object.GetHashCode"/>
/// </summary>
public override int GetHashCode()
{
int hash = (_start ^ (_count << 2));
if (_u) hash &= 0x7ffffff;
else hash |= 0x8000000;
return (hash);
}
/// <summary>
/// <see cref="object.Equals(object)"/>
/// </summary>
public override bool Equals(object obj)
{
SpanKey sk = obj as SpanKey;
return ( sk != null
&& sk._start == _start
&& sk._count == _count
&& sk._u == _u );
}
/// <summary>
/// Returns start index of the span.
/// </summary>
internal int Start { get { return (_start); } }
/// <summary>
/// Returns span count.
/// </summary>
internal int Count { get { return (_count); } }
/// <summary>
/// Returns <c>true</c> if this is a column span.
/// <c>false</c> if this is a row span.
/// </summary>
internal bool U { get { return (_u); } }
private int _start;
private int _count;
private bool _u;
}
private static int SpanPreferredDistributionOrderComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(x, y, out result))
{
if (x.UserSize.IsAuto)
{
if (y.UserSize.IsAuto)
{
result = x.MinSize.CompareTo(y.MinSize);
}
else
{
result = -1;
}
}
else
{
if (y.UserSize.IsAuto)
{
result = +1;
}
else
{
result = x.PreferredSize.CompareTo(y.PreferredSize);
}
}
}
return result;
}
private static int SpanMaxDistributionOrderComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(x, y, out result))
{
if (x.UserSize.IsAuto)
{
if (y.UserSize.IsAuto)
{
result = x.SizeCache.CompareTo(y.SizeCache);
}
else
{
result = +1;
}
}
else
{
if (y.UserSize.IsAuto)
{
result = -1;
}
else
{
result = x.SizeCache.CompareTo(y.SizeCache);
}
}
}
return result;
}
private static int StarDistributionOrderComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(x, y, out result))
{
result = x.SizeCache.CompareTo(y.SizeCache);
}
return result;
}
private sealed class StarDistributionOrderIndexComparer : IComparer<int>
{
private readonly DefinitionBase[] definitions;
internal StarDistributionOrderIndexComparer(DefinitionBase[] definitions)
{
Invariant.Assert(definitions != null);
this.definitions = definitions;
}
public int Compare(int x, int y)
{
DefinitionBase definitionX = definitions[x];
DefinitionBase definitionY = definitions[y];
int result;
if (!CompareNullRefs(definitionX, definitionY, out result))
{
result = definitionX.SizeCache.CompareTo(definitionY.SizeCache);
}
return result;
}
}
private sealed class DistributionOrderIndexComparer : IComparer<int>
{
private readonly DefinitionBase[] definitions;
internal DistributionOrderIndexComparer(DefinitionBase[] definitions)
{
Invariant.Assert(definitions != null);
this.definitions = definitions;
}
public int Compare(int x, int y)
{
DefinitionBase definitionX = definitions[x];
DefinitionBase definitionY = definitions[y];
int result;
if (!CompareNullRefs(definitionX, definitionY, out result))
{
double xprime = definitionX.SizeCache - definitionX.MinSizeForArrange;
double yprime = definitionY.SizeCache - definitionY.MinSizeForArrange;
result = xprime.CompareTo(yprime);
}
return result;
}
}
private sealed class RoundingErrorIndexComparer : IComparer<int>
{
private readonly double[] errors;
internal RoundingErrorIndexComparer(double[] errors)
{
Invariant.Assert(errors != null);
this.errors = errors;
}
public int Compare(int x, int y) => errors[x].CompareTo(errors[y]);
}
/// <summary>
/// Sort by w/min (stored in MeasureSize), descending.
/// We query the list from the back, i.e. in ascending order of w/min.
/// </summary>
private static int MinRatioComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(y, x, out result))
{
result = y.MeasureSize.CompareTo(x.MeasureSize);
}
return result;
}
/// <summary>
/// Sort by w/max (stored in SizeCache), ascending.
/// We query the list from the back, i.e. in descending order of w/max.
/// </summary>
private static int MaxRatioComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(x, y, out result))
{
result = x.SizeCache.CompareTo(y.SizeCache);
}
return result;
}
/// <summary>
/// Sort by *-weight (stored in MeasureSize), ascending.
/// </summary>
private static int StarWeightComparer(DefinitionBase x, DefinitionBase y)
{
int result;
if (!CompareNullRefs(x, y, out result))
{
result = x.MeasureSize.CompareTo(y.MeasureSize);
}
return result;
}
private sealed class MinRatioIndexComparer : IComparer<int>
{
private readonly DefinitionBase[] definitions;
internal MinRatioIndexComparer(DefinitionBase[] definitions)
{
Invariant.Assert(definitions != null);
this.definitions = definitions;
}
public int Compare(int x, int y)
{
DefinitionBase definitionX = definitions[x];
DefinitionBase definitionY = definitions[y];
int result;
if (!CompareNullRefs(definitionY, definitionX, out result))
{
result = definitionY.MeasureSize.CompareTo(definitionX.MeasureSize);
}
return result;
}
}
private sealed class MaxRatioIndexComparer : IComparer<int>
{
private readonly DefinitionBase[] definitions;
internal MaxRatioIndexComparer(DefinitionBase[] definitions)
{
Invariant.Assert(definitions != null);
this.definitions = definitions;
}
public int Compare(int x, int y)
{
DefinitionBase definitionX = definitions[x];
DefinitionBase definitionY = definitions[y];
int result;
if (!CompareNullRefs(definitionX, definitionY, out result))
{
result = definitionX.SizeCache.CompareTo(definitionY.SizeCache);
}
return result;
}
}
private sealed class StarWeightIndexComparer : IComparer<int>
{
private readonly DefinitionBase[] definitions;
internal StarWeightIndexComparer(DefinitionBase[] definitions)
{
Invariant.Assert(definitions != null);
this.definitions = definitions;
}
public int Compare(int x, int y)
{
DefinitionBase definitionX = definitions[x];
DefinitionBase definitionY = definitions[y];
int result;
if (!CompareNullRefs(definitionX, definitionY, out result))
{
result = definitionX.MeasureSize.CompareTo(definitionY.MeasureSize);
}
return result;
}
}
/// <summary>
/// Implementation of a simple enumerator of grid's logical children
/// </summary>
private class GridChildrenCollectionEnumeratorSimple : IEnumerator
{
internal GridChildrenCollectionEnumeratorSimple(Grid grid, bool includeChildren)
{
Debug.Assert(grid != null);
_currentEnumerator = -1;
_enumerator0 = new ColumnDefinitionCollection.Enumerator(grid.ExtData != null ? grid.ExtData.ColumnDefinitions : null);
_enumerator1 = new RowDefinitionCollection.Enumerator(grid.ExtData != null ? grid.ExtData.RowDefinitions : null);
// GridLineRenderer is NOT included into this enumerator.
_enumerator2Index = 0;
if (includeChildren)
{
_enumerator2Collection = grid.Children;
_enumerator2Count = _enumerator2Collection.Count;
}
else
{
_enumerator2Collection = null;
_enumerator2Count = 0;
}
}
public bool MoveNext()
{
while (_currentEnumerator < 3)
{
if (_currentEnumerator >= 0)
{
switch (_currentEnumerator)
{
case (0): if (_enumerator0.MoveNext()) { _currentChild = _enumerator0.Current; return (true); } break;
case (1): if (_enumerator1.MoveNext()) { _currentChild = _enumerator1.Current; return (true); } break;
case (2): if (_enumerator2Index < _enumerator2Count)
{
_currentChild = _enumerator2Collection[_enumerator2Index];
_enumerator2Index++;
return (true);
}
break;
}
}
_currentEnumerator++;
}
return (false);
}
public Object Current
{
get
{
if (_currentEnumerator == -1)
{
// IEnumerator.Current is documented to throw this exception
throw new InvalidOperationException(SR.EnumeratorNotStarted);
}
if (_currentEnumerator >= 3)
{
// IEnumerator.Current is documented to throw this exception
throw new InvalidOperationException(SR.EnumeratorReachedEnd);
}
// assert below is not true anymore since UIElementCollection allowes for null children
//Debug.Assert(_currentChild != null);
return (_currentChild);
}
}
public void Reset()
{
_currentEnumerator = -1;
_currentChild = null;
_enumerator0.Reset();
_enumerator1.Reset();
_enumerator2Index = 0;
}
private int _currentEnumerator;
private Object _currentChild;
private ColumnDefinitionCollection.Enumerator _enumerator0;
private RowDefinitionCollection.Enumerator _enumerator1;
private UIElementCollection _enumerator2Collection;
private int _enumerator2Index;
private int _enumerator2Count;
}
/// <summary>
/// Helper to render grid lines.
/// </summary>
internal class GridLinesRenderer : DrawingVisual
{
/// <summary>
/// Static initialization
/// </summary>
static GridLinesRenderer()
{
s_oddDashPen = new Pen(Brushes.Blue, c_penWidth);
DoubleCollection oddDashArray = new DoubleCollection();
oddDashArray.Add(c_dashLength);
oddDashArray.Add(c_dashLength);
s_oddDashPen.DashStyle = new DashStyle(oddDashArray, 0);
s_oddDashPen.DashCap = PenLineCap.Flat;
s_oddDashPen.Freeze();
s_evenDashPen = new Pen(Brushes.Yellow, c_penWidth);
DoubleCollection evenDashArray = new DoubleCollection();
evenDashArray.Add(c_dashLength);
evenDashArray.Add(c_dashLength);
s_evenDashPen.DashStyle = new DashStyle(evenDashArray, c_dashLength);
s_evenDashPen.DashCap = PenLineCap.Flat;
s_evenDashPen.Freeze();
}
/// <summary>
/// UpdateRenderBounds.
/// </summary>
/// <param name="boundsSize">Size of render bounds</param>
internal void UpdateRenderBounds(Size boundsSize)
{
using (DrawingContext drawingContext = RenderOpen())
{
Grid grid = VisualTreeHelper.GetParent(this) as Grid;
if ( grid == null
|| grid.ShowGridLines == false )
{
return;
}
for (int i = 1; i < grid.DefinitionsU.Length; ++i)
{
DrawGridLine(
drawingContext,
grid.DefinitionsU[i].FinalOffset, 0.0,
grid.DefinitionsU[i].FinalOffset, boundsSize.Height);
}
for (int i = 1; i < grid.DefinitionsV.Length; ++i)
{
DrawGridLine(
drawingContext,
0.0, grid.DefinitionsV[i].FinalOffset,
boundsSize.Width, grid.DefinitionsV[i].FinalOffset);
}
}
}
/// <summary>
/// Draw single hi-contrast line.
/// </summary>
private static void DrawGridLine(
DrawingContext drawingContext,
double startX,
double startY,
double endX,
double endY)
{
Point start = new Point(startX, startY);
Point end = new Point(endX, endY);
drawingContext.DrawLine(s_oddDashPen, start, end);
drawingContext.DrawLine(s_evenDashPen, start, end);
}
private const double c_dashLength = 4.0; //
private const double c_penWidth = 1.0; //
private static readonly Pen s_oddDashPen; // first pen to draw dash
private static readonly Pen s_evenDashPen; // second pen to draw dash
private static readonly Point c_zeroPoint = new Point(0, 0);
}
#endregion Private Structures Classes
//------------------------------------------------------
//
// Extended debugging for grid
//
//------------------------------------------------------
#if GRIDPARANOIA
private static double _performanceFrequency;
private static readonly bool _performanceFrequencyInitialized = InitializePerformanceFrequency();
private static extern bool QueryPerformanceCounter(out long lpPerformanceCount);
private static extern bool QueryPerformanceFrequency(out long lpFrequency);
private static double CostInMilliseconds(long count)
{
return ((double)count / _performanceFrequency);
}
private static long Cost(long startCount, long endCount)
{
long l = endCount - startCount;
if (l < 0) { l += long.MaxValue; }
return (l);
}
private static bool InitializePerformanceFrequency()
{
long l;
QueryPerformanceFrequency(out l);
_performanceFrequency = (double)l * 0.001;
return (true);
}
private struct Counter
{
internal long Start;
internal long Total;
internal int Calls;
}
private Counter[] _counters;
private bool _hasNewCounterInfo;
#endif // GRIDPARANOIA
//
// This property
// 1. Finds the correct initial size for the _effectiveValues store on the current DependencyObject
// 2. This is a performance optimization
//
internal override int EffectiveValuesInitialSize
{
get { return 9; }
}
[Conditional("GRIDPARANOIA")]
internal void EnterCounterScope(Counters scopeCounter)
{
#if GRIDPARANOIA
if (ID == "CountThis")
{
if (_counters == null)
{
_counters = new Counter[(int)Counters.Count];
}
ExitCounterScope(Counters.Default);
EnterCounter(scopeCounter);
}
else
{
_counters = null;
}
#endif // GRIDPARANOIA
}
[Conditional("GRIDPARANOIA")]
internal void ExitCounterScope(Counters scopeCounter)
{
#if GRIDPARANOIA
if (_counters != null)
{
if (scopeCounter != Counters.Default)
{
ExitCounter(scopeCounter);
}
if (_hasNewCounterInfo)
{
string NFormat = "F6";
Console.WriteLine(
"\ncounter name | total t (ms) | # of calls | per call t (ms)"
+ "\n----------------------+---------------+---------------+----------------------" );
for (int i = 0; i < _counters.Length; ++i)
{
if (_counters[i].Calls > 0)
{
Counters counter = (Counters)i;
double total = CostInMilliseconds(_counters[i].Total);
double single = total / _counters[i].Calls;
string counterName = counter.ToString();
string separator;
if (counterName.Length < 8) { separator = "\t\t\t"; }
else if (counterName.Length < 16) { separator = "\t\t"; }
else { separator = "\t"; }
Console.WriteLine(
counter.ToString() + separator
+ total.ToString(NFormat) + "\t"
+ _counters[i].Calls + "\t\t"
+ single.ToString(NFormat));
_counters[i] = new Counter();
}
}
}
_hasNewCounterInfo = false;
}
#endif // GRIDPARANOIA
}
[Conditional("GRIDPARANOIA")]
internal void EnterCounter(Counters counter)
{
#if GRIDPARANOIA
if (_counters != null)
{
Debug.Assert((int)counter < _counters.Length);
int i = (int)counter;
QueryPerformanceCounter(out _counters[i].Start);
}
#endif // GRIDPARANOIA
}
[Conditional("GRIDPARANOIA")]
internal void ExitCounter(Counters counter)
{
#if GRIDPARANOIA
if (_counters != null)
{
Debug.Assert((int)counter < _counters.Length);
int i = (int)counter;
long l;
QueryPerformanceCounter(out l);
l = Cost(_counters[i].Start, l);
_counters[i].Total += l;
_counters[i].Calls++;
_hasNewCounterInfo = true;
}
#endif // GRIDPARANOIA
}
internal enum Counters : int
{
Default = -1,
MeasureOverride,
_ValidateColsStructure,
_ValidateRowsStructure,
_ValidateCells,
_MeasureCell,
__MeasureChild,
_CalculateDesiredSize,
ArrangeOverride,
_SetFinalSize,
_ArrangeChildHelper2,
_PositionCell,
Count,
}
}
}
|