1 write to _parent
Microsoft.ML.Transforms (1)
Text\WordEmbeddingsExtractor.cs (1)
319
_parent
= parent;
20 references to _parent
Microsoft.ML.Transforms (20)
Text\WordEmbeddingsExtractor.cs (20)
320
for (int i = 0; i <
_parent
.ColumnPairs.Length; i++)
322
_parent
.CheckInputColumn(inputSchema, i, ColMapNewToOld[i]);
324
_outputType = new VectorDataViewType(NumberDataViewType.Single, 3 *
_parent
._currentVocab.Dimension);
330
=>
_parent
.ColumnPairs.Select(x => new DataViewSchema.DetachedColumn(x.outputColumnName, _outputType, null)).ToArray();
334
foreach (var (outputColumnName, inputColumnName) in
_parent
.ColumnPairs)
337
var schema =
_parent
.GetOutputSchema(InputSchema);
422
var shapeD = new long[] {
_parent
._currentVocab.GetNumWords() + 3,
_parent
._currentVocab.Dimension };
423
var wordVectors =
_parent
._currentVocab.WordVectors;
427
tensorD.AddRange(Enumerable.Repeat(0.0f,
_parent
._currentVocab.Dimension));
429
tensorD.AddRange(Enumerable.Repeat(float.MaxValue,
_parent
._currentVocab.Dimension));
431
tensorD.AddRange(Enumerable.Repeat(float.MinValue,
_parent
._currentVocab.Dimension));
435
var tensorF =
_parent
._currentVocab.GetNumWords();
445
nodeY.AddAttribute("classes_strings",
_parent
._currentVocab.GetWordLabels());
446
nodeY.AddAttribute("default_int64",
_parent
._currentVocab.GetNumWords());
546
Host.Assert(0 <= iinfo && iinfo <
_parent
.ColumnPairs.Length);
554
Host.Assert(0 <= iinfo && iinfo <
_parent
.ColumnPairs.Length);
562
int dimension =
_parent
._currentVocab.Dimension;
563
float[] wordVector = new float[
_parent
._currentVocab.Dimension];
581
if (
_parent
._currentVocab.GetWordVector(in srcValues[word], wordVector))