1 write to Parent
Microsoft.ML.TorchSharp (1)
29 references to Parent
Microsoft.ML.TorchSharp (29)
Roberta\QATrainer.cs (29)
201Device = TorchUtils.InitializeDevice(Parent.Host);
204Model = new RobertaModelForQA(Parent.Option);
209Device = TorchUtils.InitializeDevice(Parent.Host);
219Optimizer = BaseOptimizer.GetOptimizer(Parent.Option, parameters);
222max_lr: Parent.Option.LearningRate[0],
223total_steps: ((RowCount / Parent.Option.BatchSize) + 1) * Parent.Option.MaxEpoch,
224pct_start: Parent.Option.WarmupRatio,
226div_factor: 1.0 / Parent.Option.StartLearningRateRatio,
227final_div_factor: Parent.Option.StartLearningRateRatio / Parent.Option.FinalLearningRateRatio);
232var labelCol = input.GetColumn<int>(Parent.Option.AnswerIndexStartColumnName);
245var destDir = Path.Combine(((IHostEnvironmentInternal)Parent.Host).TempFilePath, "mlnet");
253using (var ch = (Parent.Host as IHostEnvironment).Start("Ensuring model file is present."))
255var ensureModel = ResourceManagerUtils.Instance.EnsureResourceAsync(Parent.Host, ch, ModelUrl, destFileName, destDir, timeout);
272DataViewRowCursor cursor = input.GetRowCursor(input.Schema[Parent.Option.ContextColumnName], input.Schema[Parent.Option.QuestionColumnName], input.Schema[Parent.Option.TrainingAnswerColumnName], input.Schema[Parent.Option.AnswerIndexStartColumnName]);
274var contextGetter = cursor.GetGetter<ReadOnlyMemory<char>>(input.Schema[Parent.Option.ContextColumnName]);
275var questionGetter = cursor.GetGetter<ReadOnlyMemory<char>>(input.Schema[Parent.Option.QuestionColumnName]);
276var answerGetter = cursor.GetGetter<ReadOnlyMemory<char>>(input.Schema[Parent.Option.TrainingAnswerColumnName]);
277var answerIndexGetter = cursor.GetGetter<int>(input.Schema[Parent.Option.AnswerIndexStartColumnName]);
282List<Tensor> inputTensors = new List<Tensor>(Parent.Option.BatchSize);
283List<Tensor> targetTensors = new List<Tensor>(Parent.Option.BatchSize);
323for (int i = 0; i < Parent.Option.BatchSize && cursorValid; i++)
364torch.Tensor lossStart = torch.nn.CrossEntropyLoss(reduction: Parent.Option.Reduction).forward(startLogits, startTargets);
365torch.Tensor lossEnd = torch.nn.CrossEntropyLoss(reduction: Parent.Option.Reduction).forward(endLogits, endTargets);
375if (Updates % Parent.Option.LogEveryNStep == 0)