4 writes to _windowSize
Microsoft.ML.TimeSeries (4)
AdaptiveSingularSpectrumSequenceModeler.cs (4)
264
_windowSize
= windowSize;
308
_windowSize
= model._windowSize;
369
_windowSize
= ctx.Reader.ReadInt32();
1290
_windowSize
--;
100 references to _windowSize
Microsoft.ML.TimeSeries (100)
AdaptiveSingularSpectrumSequenceModeler.cs (100)
187
public Single LastSmoothedValue { get { return _state[
_windowSize
- 2]; } }
287
_info.WindowSize =
_windowSize
;
298
_host.Assert(model.
_windowSize
>= 2);
299
_host.Assert(model._seriesLength > model.
_windowSize
);
300
_host.Assert(model._trainSize > 2 * model.
_windowSize
);
302
_host.Assert(1 <= model._rank && model._rank < model.
_windowSize
);
308
_windowSize = model.
_windowSize
;
322
_alpha = new Single[
_windowSize
- 1];
323
Array.Copy(model._alpha, _alpha,
_windowSize
- 1);
324
_state = new Single[
_windowSize
- 1];
325
Array.Copy(model._state, _state,
_windowSize
- 1);
327
_x = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
328
_xSmooth = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
333
_wTrans = new CpuAlignedMatrixRow(_rank,
_windowSize
, CpuMathUtils.GetVectorAlignment());
370
_host.CheckDecode(
_windowSize
>= 2);
371
_host.CheckDecode(_seriesLength >
_windowSize
);
374
_host.CheckDecode(_trainSize > 2 *
_windowSize
);
377
_host.CheckDecode(1 <= _rank && _rank <
_windowSize
);
388
_host.CheckDecode(Utils.Size(_alpha) ==
_windowSize
- 1);
393
_host.CheckDecode(Utils.Size(_state) ==
_windowSize
- 1);
396
_state = new Single[
_windowSize
- 1];
412
_host.CheckDecode(1 <= _maxRank && _maxRank <=
_windowSize
- 1);
419
_info.AutoRegressiveCoefficients = new Single[
_windowSize
- 1];
420
Array.Copy(_alpha, _info.AutoRegressiveCoefficients,
_windowSize
- 1);
424
_info.WindowSize =
_windowSize
;
433
_host.CheckDecode(Utils.Size(tempArray) == _rank *
_windowSize
);
434
_wTrans = new CpuAlignedMatrixRow(_rank,
_windowSize
, CpuMathUtils.GetVectorAlignment());
444
_x = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
445
_xSmooth = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
454
_host.Assert(
_windowSize
>= 2);
455
_host.Assert(_seriesLength >
_windowSize
);
456
_host.Assert(_trainSize > 2 *
_windowSize
);
458
_host.Assert(1 <= _rank && _rank <
_windowSize
);
459
_host.Assert(Utils.Size(_alpha) ==
_windowSize
- 1);
462
_host.Assert(1 <= _maxRank && _maxRank <=
_windowSize
- 1);
488
ctx.Writer.Write(
_windowSize
);
510
var tempArray = new Single[_rank *
_windowSize
];
732
for (int i = 0; i <
_windowSize
- 2; ++i)
860
var coeff = new Double[
_windowSize
- 1];
873
for (i = 0; i <
_windowSize
- 1; ++i)
881
_info.RootsBeforeStabilization = new Complex[
_windowSize
- 1];
882
Array.Copy(roots, _info.RootsBeforeStabilization,
_windowSize
- 1);
886
for (i = 0; i <
_windowSize
- 1; ++i)
893
for (i = 0; i <
_windowSize
- 1; ++i)
897
if (roots[i].Magnitude >= 1 && 2 * Math.PI / Math.Abs(roots[i].Phase) >
_windowSize
)
1001
for (i = 0; i <
_windowSize
- 1; ++i)
1028
for (i = 0; i <
_windowSize
- 1; ++i)
1047
for (i = 0; i <
_windowSize
- 1; ++i)
1060
for (i = 0; i <
_windowSize
- 1; ++i)
1083
for (i = 0; i <
_windowSize
- 1; ++i)
1113
_wTrans = new CpuAlignedMatrixRow(_rank,
_windowSize
, CpuMathUtils.GetVectorAlignment());
1114
Single[] vecs = new Single[_rank *
_windowSize
];
1117
vecs[(
_windowSize
+ 1) * i] = 1;
1127
for (i = 0; i <
_windowSize
- 1; ++i)
1132
for (i = 0; i <
_windowSize
- len - 1; ++i)
1134
for (i = Math.Max(0, len -
_windowSize
+ 1); i < len; ++i)
1135
_x[i - len +
_windowSize
- 1] = _buffer[i];
1136
_x[
_windowSize
- 1] = input;
1145
for (i = 0; i <
_windowSize
- 2; ++i)
1147
_state[i] = ((
_windowSize
- 2 - i) * _state[i + 1] + _xSmooth[i + 1]) / (
_windowSize
- 1 - i);
1150
_state[
_windowSize
- 2] = _xSmooth[
_windowSize
- 1];
1151
_nextPrediction += _state[
_windowSize
- 2] * _alpha[
_windowSize
- 2];
1182
_info.WindowSize =
_windowSize
;
1185
if (count <= 2 *
_windowSize
)
1233
_info.WindowSize =
_windowSize
;
1236
if (count <= 2 *
_windowSize
)
1258
var signalLength = _rankSelectionMethod == RankSelectionMethod.Exact ? originalSeriesLength : 2 *
_windowSize
- 1;//originalSeriesLength;
1263
TrajectoryMatrix tMat = new TrajectoryMatrix(_host, dataArray,
_windowSize
, originalSeriesLength);
1270
for (i = 0; i <
_windowSize
* _maxRank; ++i)
1283
for (i = 0; i <
_windowSize
; ++i)
1285
var v = leftSingularVecs[(i + 1) *
_windowSize
- 1];
1288
if (
_windowSize
> 2)
1291
_maxRank =
_windowSize
/ 2;
1292
_alpha = new Single[
_windowSize
- 1];
1293
_state = new Single[
_windowSize
- 1];
1294
_x = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
1295
_xSmooth = new CpuAlignedVector(
_windowSize
, CpuMathUtils.GetVectorAlignment());
1318
var temp = (Single)(1f / Math.Sqrt(
_windowSize
));
1319
for (i = 0; i <
_windowSize
; ++i)
1335
_wTrans = new CpuAlignedMatrixRow(_rank,
_windowSize
, CpuMathUtils.GetVectorAlignment());
1343
_y[i] = leftSingularVecs[
_windowSize
* (i + 1) - 1];
1348
for (i = 0; i <
_windowSize
- 1; ++i)
1381
for (i = 0; i <
_windowSize
- len; ++i)
1383
for (i = Math.Max(0, len -
_windowSize
); i < len; ++i)
1384
_x[i - len +
_windowSize
] = _buffer[i];
1388
for (i = originalSeriesLength -
_windowSize
; i < originalSeriesLength; ++i)
1389
_x[i - originalSeriesLength +
_windowSize
] = dataArray[i];
1395
for (i = 1; i <
_windowSize
; ++i)
1404
_info.WindowSize =
_windowSize
;
1405
_info.AutoRegressiveCoefficients = new Single[
_windowSize
- 1];
1406
Array.Copy(_alpha, _info.AutoRegressiveCoefficients,
_windowSize
- 1);
1441
for (j = i; j <
_windowSize
- 1; ++j, ++k)
1444
for (j = Math.Max(0, i -
_windowSize
+ 1); j < i; ++j, ++k)
1452
var lastCol = new FixedSizeQueue<Single>(
_windowSize
- 1);
1454
for (i = 0; i <
_windowSize
- 3; ++i)
1457
lastCol.AddLast(_alpha[
_windowSize
- 2]);
1463
for (j = 0; j <
_windowSize
- 1; ++j)