|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.CommandLine;
using Microsoft.ML.Data;
using Microsoft.ML.Runtime;
using Microsoft.ML.Transforms.TimeSeries;
[assembly: LoadableClass(IidSpikeDetector.Summary, typeof(IDataTransform), typeof(IidSpikeDetector), typeof(IidSpikeDetector.Options), typeof(SignatureDataTransform),
IidSpikeDetector.UserName, IidSpikeDetector.LoaderSignature, IidSpikeDetector.ShortName)]
[assembly: LoadableClass(IidSpikeDetector.Summary, typeof(IDataTransform), typeof(IidSpikeDetector), null, typeof(SignatureLoadDataTransform),
IidSpikeDetector.UserName, IidSpikeDetector.LoaderSignature)]
[assembly: LoadableClass(IidSpikeDetector.Summary, typeof(IidSpikeDetector), null, typeof(SignatureLoadModel),
IidSpikeDetector.UserName, IidSpikeDetector.LoaderSignature)]
[assembly: LoadableClass(typeof(IRowMapper), typeof(IidSpikeDetector), null, typeof(SignatureLoadRowMapper),
IidSpikeDetector.UserName, IidSpikeDetector.LoaderSignature)]
namespace Microsoft.ML.Transforms.TimeSeries
{
/// <summary>
/// <see cref="ITransformer"/> resulting from fitting a <see cref="IidSpikeEstimator"/>.
/// </summary>
public sealed class IidSpikeDetector : IidAnomalyDetectionBaseWrapper, IStatefulTransformer
{
internal const string Summary = "This transform detects the spikes in a i.i.d. sequence using adaptive kernel density estimation.";
internal const string LoaderSignature = "IidSpikeDetector";
internal const string UserName = "IID Spike Detection";
internal const string ShortName = "ispike";
internal sealed class Options : TransformInputBase
{
[Argument(ArgumentType.Required, HelpText = "The name of the source column.", ShortName = "src",
SortOrder = 1, Purpose = SpecialPurpose.ColumnName)]
public string Source;
[Argument(ArgumentType.Required, HelpText = "The name of the new column.",
SortOrder = 2)]
public string Name;
[Argument(ArgumentType.AtMostOnce, HelpText = "The argument that determines whether to detect positive or negative anomalies, or both.", ShortName = "side",
SortOrder = 101)]
public AnomalySide Side = AnomalySide.TwoSided;
[Argument(ArgumentType.AtMostOnce, HelpText = "The size of the sliding window for computing the p-value.", ShortName = "wnd",
SortOrder = 102)]
public int PvalueHistoryLength = 100;
[Argument(ArgumentType.Required, HelpText = "The confidence for spike detection in the range [0, 100].",
ShortName = "cnf", SortOrder = 3)]
public double Confidence = 99;
}
private sealed class BaseArguments : ArgumentsBase
{
public BaseArguments(Options options)
{
Source = options.Source;
Name = options.Name;
Side = options.Side;
WindowSize = options.PvalueHistoryLength;
AlertThreshold = 1 - options.Confidence / 100;
AlertOn = AlertingScore.PValueScore;
Martingale = MartingaleType.None;
}
public BaseArguments(IidSpikeDetector transform)
{
Source = transform.InternalTransform.InputColumnName;
Name = transform.InternalTransform.OutputColumnName;
Side = transform.InternalTransform.Side;
WindowSize = transform.InternalTransform.WindowSize;
AlertThreshold = transform.InternalTransform.AlertThreshold;
AlertOn = AlertingScore.PValueScore;
Martingale = MartingaleType.None;
}
}
private static VersionInfo GetVersionInfo()
{
return new VersionInfo(
modelSignature: "ISPKTRNS",
verWrittenCur: 0x00010001, // Initial
verReadableCur: 0x00010001,
verWeCanReadBack: 0x00010001,
loaderSignature: LoaderSignature,
loaderAssemblyName: typeof(IidSpikeDetector).Assembly.FullName);
}
// Factory method for SignatureDataTransform.
private static IDataTransform Create(IHostEnvironment env, Options options, IDataView input)
{
Contracts.CheckValue(env, nameof(env));
env.CheckValue(options, nameof(options));
env.CheckValue(input, nameof(input));
return new IidSpikeDetector(env, options).MakeDataTransform(input);
}
IStatefulTransformer IStatefulTransformer.Clone()
{
var clone = (IidSpikeDetector)MemberwiseClone();
clone.InternalTransform.StateRef = (IidAnomalyDetectionBase.State)clone.InternalTransform.StateRef.Clone();
clone.InternalTransform.StateRef.InitState(clone.InternalTransform, InternalTransform.Host);
return clone;
}
internal IidSpikeDetector(IHostEnvironment env, Options options)
: base(new BaseArguments(options), LoaderSignature, env)
{
// This constructor is empty.
}
// Factory method for SignatureLoadDataTransform.
private static IDataTransform Create(IHostEnvironment env, ModelLoadContext ctx, IDataView input)
{
Contracts.CheckValue(env, nameof(env));
env.CheckValue(ctx, nameof(ctx));
env.CheckValue(input, nameof(input));
return new IidSpikeDetector(env, ctx).MakeDataTransform(input);
}
// Factory method for SignatureLoadModel.
internal static IidSpikeDetector Create(IHostEnvironment env, ModelLoadContext ctx)
{
Contracts.CheckValue(env, nameof(env));
env.CheckValue(ctx, nameof(ctx));
ctx.CheckAtModel(GetVersionInfo());
return new IidSpikeDetector(env, ctx);
}
private IidSpikeDetector(IHostEnvironment env, ModelLoadContext ctx)
: base(env, ctx, LoaderSignature)
{
// *** Binary format ***
// <base>
InternalTransform.Host.CheckDecode(InternalTransform.ThresholdScore == AlertingScore.PValueScore);
}
private IidSpikeDetector(IHostEnvironment env, IidSpikeDetector transform)
: base(new BaseArguments(transform), LoaderSignature, env)
{
}
private protected override void SaveModel(ModelSaveContext ctx)
{
InternalTransform.Host.CheckValue(ctx, nameof(ctx));
ctx.CheckAtModel();
ctx.SetVersionInfo(GetVersionInfo());
InternalTransform.Host.Assert(InternalTransform.ThresholdScore == AlertingScore.PValueScore);
// *** Binary format ***
// <base>
base.SaveModel(ctx);
}
// Factory method for SignatureLoadRowMapper.
private static IRowMapper Create(IHostEnvironment env, ModelLoadContext ctx, DataViewSchema inputSchema)
=> Create(env, ctx).MakeRowMapper(inputSchema);
}
/// <summary>
/// Detect a signal spike on an
/// <a href="https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables"> independent identically distributed (i.i.d.)</a>
/// time series based on adaptive kernel density estimation.
/// </summary>
/// <remarks>
/// <format type="text/markdown"><![CDATA[
/// To create this estimator, use [DetectIidSpike](xref:Microsoft.ML.TimeSeriesCatalog.DetectIidSpike(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int32,System.Int32,Microsoft.ML.Transforms.TimeSeries.AnomalySide)).
///
/// [!include[io](~/../docs/samples/docs/api-reference/io-time-series-spike.md)]
///
/// ### Estimator Characteristics
/// | | |
/// | -- | -- |
/// | Does this estimator need to look at the data to train its parameters? | No |
/// | Input column data type | <xref:System.Single> |
/// | Output column data type | 3-element vector of<xref:System.Double> |
/// | Exportable to ONNX | No |
///
/// [!include[io](~/../docs/samples/docs/api-reference/time-series-props.md)]
///
/// [!include[io](~/../docs/samples/docs/api-reference/time-series-iid.md)]
///
/// [!include[io](~/../docs/samples/docs/api-reference/time-series-pvalue.md)]
///
/// Check the See Also section for links to usage examples.
/// ]]>
/// </format>
/// </remarks>
/// <seealso cref="Microsoft.ML.TimeSeriesCatalog.DetectIidSpike(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Double,System.Int32,Microsoft.ML.Transforms.TimeSeries.AnomalySide)" />
public sealed class IidSpikeEstimator : TrivialEstimator<IidSpikeDetector>
{
/// <summary>
/// Create a new instance of <see cref="IidSpikeEstimator"/>
/// </summary>
/// <param name="env">Host Environment.</param>
/// <param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName"/>.
/// Column is a vector of type double and size 4. The vector contains Alert, Raw Score, P-Value as first three values.</param>
/// <param name="confidence">The confidence for spike detection in the range [0, 100].</param>
/// <param name="pvalueHistoryLength">The size of the sliding window for computing the p-value.</param>
/// <param name="inputColumnName">Name of column to transform. If set to <see langword="null"/>, the value of the <paramref name="outputColumnName"/> will be used as source.</param>
/// <param name="side">The argument that determines whether to detect positive or negative anomalies, or both.</param>
internal IidSpikeEstimator(IHostEnvironment env, string outputColumnName, double confidence, int pvalueHistoryLength, string inputColumnName, AnomalySide side = AnomalySide.TwoSided)
: base(Contracts.CheckRef(env, nameof(env)).Register(nameof(IidSpikeDetector)),
new IidSpikeDetector(env, new IidSpikeDetector.Options
{
Name = outputColumnName,
Source = inputColumnName,
Confidence = confidence,
PvalueHistoryLength = pvalueHistoryLength,
Side = side
}))
{
}
internal IidSpikeEstimator(IHostEnvironment env, IidSpikeDetector.Options options)
: base(Contracts.CheckRef(env, nameof(env)).Register(nameof(IidSpikeEstimator)), new IidSpikeDetector(env, options))
{
}
/// <summary>
/// Schema propagation for transformers.
/// Returns the output schema of the data, if the input schema is like the one provided.
/// </summary>
public override SchemaShape GetOutputSchema(SchemaShape inputSchema)
{
Host.CheckValue(inputSchema, nameof(inputSchema));
if (!inputSchema.TryFindColumn(Transformer.InternalTransform.InputColumnName, out var col))
throw Host.ExceptSchemaMismatch(nameof(inputSchema), "input", Transformer.InternalTransform.InputColumnName);
if (col.ItemType != NumberDataViewType.Single)
throw Host.ExceptSchemaMismatch(nameof(inputSchema), "input", Transformer.InternalTransform.InputColumnName, "Single", col.GetTypeString());
var metadata = new List<SchemaShape.Column>() {
new SchemaShape.Column(AnnotationUtils.Kinds.SlotNames, SchemaShape.Column.VectorKind.Vector, TextDataViewType.Instance, false)
};
var resultDic = inputSchema.ToDictionary(x => x.Name);
resultDic[Transformer.InternalTransform.OutputColumnName] = new SchemaShape.Column(
Transformer.InternalTransform.OutputColumnName, SchemaShape.Column.VectorKind.Vector, NumberDataViewType.Double, false, new SchemaShape(metadata));
return new SchemaShape(resultDic.Values);
}
}
}
|