|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.IO;
using System.Linq;
using Microsoft.ML.Data;
using Microsoft.ML.Model;
using Microsoft.ML.RunTests;
using Microsoft.ML.TestFrameworkCommon;
using Microsoft.ML.Tools;
using Microsoft.ML.Transforms;
using Xunit;
using Xunit.Abstractions;
namespace Microsoft.ML.Tests.Transformers
{
public class RffTests : TestDataPipeBase
{
public RffTests(ITestOutputHelper output) : base(output)
{
}
private class TestClass
{
[VectorType(100)]
public float[] A;
}
private class TestClassBiggerSize
{
[VectorType(200)]
public float[] A;
}
private class TestClassInvalidSchema
{
public int A;
}
[Fact]
public void RffWorkout()
{
Random rand = new Random();
var data = new[] {
new TestClass() { A = Enumerable.Range(0, 100).Select(x => (float)rand.NextDouble()).ToArray() },
new TestClass() { A = Enumerable.Range(0, 100).Select(x => (float)rand.NextDouble()).ToArray() }
};
var invalidData = ML.Data.LoadFromEnumerable(new[] { new TestClassInvalidSchema { A = 1 }, new TestClassInvalidSchema { A = 1 } });
var validFitInvalidData = ML.Data.LoadFromEnumerable(new[] { new TestClassBiggerSize { A = new float[200] }, new TestClassBiggerSize { A = new float[200] } });
var dataView = ML.Data.LoadFromEnumerable(data);
var pipe = ML.Transforms.ApproximatedKernelMap(new[]{
new ApproximatedKernelMappingEstimator.ColumnOptions("RffA", 5, false, "A"),
new ApproximatedKernelMappingEstimator.ColumnOptions("RffB", 10, true, "A", new LaplacianKernel())
});
TestEstimatorCore(pipe, dataView, invalidInput: invalidData, validForFitNotValidForTransformInput: validFitInvalidData);
Done();
}
[Fact]
public void ApproximateKernelMap()
{
string dataPath = GetDataPath(TestDatasets.breastCancer.trainFilename);
var data = ML.Data.LoadFromTextFile(dataPath, new[] {
new TextLoader.Column("VectorFloat", DataKind.Single, 1, 8),
new TextLoader.Column("Label", DataKind.Single, 0)
});
var est = ML.Transforms.ApproximatedKernelMap("RffVectorFloat", "VectorFloat", 3, true);
TestEstimatorCore(est, data);
var outputPath = GetOutputPath("Rff", "featurized.tsv");
var savedData = ML.Data.TakeRows(est.Fit(data).Transform(data), 4);
using (var fs = File.Create(outputPath))
ML.Data.SaveAsText(savedData, fs, headerRow: true, keepHidden: true);
CheckEquality("Rff", "featurized.tsv");
Done();
}
[Fact]
public void TestCommandLine()
{
Assert.Equal(0, Maml.Main(new[] { @"showschema loader=Text{col=A:R4:0-100} xf=Rff{col=B:A dim=4 useSin+ kernel=LaplacianRandom} in=f:\2.txt" }));
}
[Fact]
public void TestOldSavingAndLoading()
{
Random rand = new Random();
var data = new[] {
new TestClass() { A = Enumerable.Range(0, 100).Select(x => (float)rand.NextDouble()).ToArray() },
new TestClass() { A = Enumerable.Range(0, 100).Select(x => (float)rand.NextDouble()).ToArray() }
};
var dataView = ML.Data.LoadFromEnumerable(data);
var est = ML.Transforms.ApproximatedKernelMap(new[]{
new ApproximatedKernelMappingEstimator.ColumnOptions("RffA", 5, false, "A"),
new ApproximatedKernelMappingEstimator.ColumnOptions("RffB", 10, true, "A", new LaplacianKernel())
});
var result = est.Fit(dataView).Transform(dataView);
var resultRoles = new RoleMappedData(result);
using (var ms = new MemoryStream())
{
TrainUtils.SaveModel(Env, Env.Start("saving"), ms, null, resultRoles);
ms.Position = 0;
var loadedView = ModelFileUtils.LoadTransforms(Env, dataView, ms);
}
}
}
}
|