33 references to _classNumber
Microsoft.ML.Tests (33)
TrainerEstimators\TreeEstimators.cs (33)
430[KeyType(_classNumber)] 432[VectorType(_classNumber)] 456labels[i] = (uint)featureSum % _classNumber; 457dataList.Add(new GbmExample { Features = featureVector, Label = labels[i], Score = new float[_classNumber] }); 512lgbmProbabilities = new double[_rowNumber * _classNumber]; 514lgbmRawScores = new double[_rowNumber * _classNumber]; 562for (int j = 0; j < _classNumber; ++j) 564Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 565if (float.IsNaN((float)nativeResult1[j + i * _classNumber])) 567sum += MathUtils.SigmoidSlow(sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 569for (int j = 0; j < _classNumber; ++j) 571double prob = MathUtils.SigmoidSlow(sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 598for (int j = 0; j < _classNumber; ++j) 600Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 601if (float.IsNaN((float)nativeResult1[j + i * _classNumber])) 603sum += MathUtils.SigmoidSlow((float)sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 605for (int j = 0; j < _classNumber; ++j) 607double prob = MathUtils.SigmoidSlow((float)sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 633for (int j = 0; j < _classNumber; ++j) 635if (float.IsNaN((float)firstNativeResult1[j + i * _classNumber])) 637if (float.IsNaN((float)secondNativeResult1[j + i * _classNumber])) 645Assert.NotEqual((float)firstNativeResult1[j + i * _classNumber], (float)secondNativeResult1[j + i * _classNumber], 6); 669for (int j = 0; j < _classNumber; ++j) 671Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 672sum += Math.Exp((float)nativeResult1[j + i * _classNumber]); 674for (int j = 0; j < _classNumber; ++j) 676double prob = Math.Exp(nativeResult1[j + i * _classNumber]); 698for (int j = 0; j < _classNumber; ++j) 700Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 701sum += Math.Exp((float)nativeResult1[j + i * _classNumber]); 703for (int j = 0; j < _classNumber; ++j) 705double prob = Math.Exp(nativeResult1[j + i * _classNumber]);