33 references to _classNumber
Microsoft.ML.Tests (33)
TrainerEstimators\TreeEstimators.cs (33)
432[KeyType(_classNumber)] 434[VectorType(_classNumber)] 458labels[i] = (uint)featureSum % _classNumber; 459dataList.Add(new GbmExample { Features = featureVector, Label = labels[i], Score = new float[_classNumber] }); 514lgbmProbabilities = new double[_rowNumber * _classNumber]; 516lgbmRawScores = new double[_rowNumber * _classNumber]; 564for (int j = 0; j < _classNumber; ++j) 566Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 567if (float.IsNaN((float)nativeResult1[j + i * _classNumber])) 569sum += MathUtils.SigmoidSlow(sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 571for (int j = 0; j < _classNumber; ++j) 573double prob = MathUtils.SigmoidSlow(sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 600for (int j = 0; j < _classNumber; ++j) 602Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 603if (float.IsNaN((float)nativeResult1[j + i * _classNumber])) 605sum += MathUtils.SigmoidSlow((float)sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 607for (int j = 0; j < _classNumber; ++j) 609double prob = MathUtils.SigmoidSlow((float)sigmoidScale * (float)nativeResult1[j + i * _classNumber]); 635for (int j = 0; j < _classNumber; ++j) 637if (float.IsNaN((float)firstNativeResult1[j + i * _classNumber])) 639if (float.IsNaN((float)secondNativeResult1[j + i * _classNumber])) 647Assert.NotEqual((float)firstNativeResult1[j + i * _classNumber], (float)secondNativeResult1[j + i * _classNumber], 6); 671for (int j = 0; j < _classNumber; ++j) 673Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 674sum += Math.Exp((float)nativeResult1[j + i * _classNumber]); 676for (int j = 0; j < _classNumber; ++j) 678double prob = Math.Exp(nativeResult1[j + i * _classNumber]); 700for (int j = 0; j < _classNumber; ++j) 702Assert.Equal(nativeResult0[j + i * _classNumber], mlnetPredictions[i].Score[j], 0.000001); 703sum += Math.Exp((float)nativeResult1[j + i * _classNumber]); 705for (int j = 0; j < _classNumber; ++j) 707double prob = Math.Exp(nativeResult1[j + i * _classNumber]);