176 references to _mlContext
Microsoft.ML.TensorFlow.Tests (176)
TensorflowTests.cs (176)
140var data = TextLoader.Create(_mlContext, new TextLoader.Options()
149var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath"))
150.Append(new ImageResizingEstimator(_mlContext, "ImageCropped", imageHeight, imageWidth, "ImageReal"))
151.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true))
152.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input"))
153.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output"))
154.Append(new ValueToKeyMappingEstimator(_mlContext, "Label"))
155.AppendCacheCheckpoint(_mlContext)
156.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy());
162var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
165var predictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(transformer);
189var loader = _mlContext.Data.LoadFromEnumerable(
200using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
288var loader = _mlContext.Data.LoadFromEnumerable(data);
292using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
410var loader = _mlContext.Data.LoadFromEnumerable(data);
414using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
506var data = _mlContext.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile));
507var images = new ImageLoadingTransformer(_mlContext, imageFolder, ("ImageReal", "ImagePath")).Transform(data);
508var cropped = new ImageResizingTransformer(_mlContext, "ImageCropped", 32, 32, "ImageReal").Transform(images);
510var pixels = _mlContext.Transforms.ExtractPixels("image_tensor", "ImageCropped", outputAsFloatArray: false).Fit(cropped).Transform(cropped);
511using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
542var reader = _mlContext.Data.CreateTextLoader(
554var images = _mlContext.Transforms.LoadImages("ImageReal", "ImagePath", imageFolder).Fit(data).Transform(data);
555var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", 224, 224, "ImageReal").Fit(images).Transform(images);
556var pixels = _mlContext.Transforms.ExtractPixels(inputName, "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped);
557using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
580var schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
641schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
655var reader = _mlContext.Data.CreateTextLoader(
669var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder")
670.Append(_mlContext.Model.LoadTensorFlowModel("mnist_model/frozen_saved_model.pb").ScoreTensorFlowModel(new[] { "Softmax", "dense/Relu" }, new[] { "Placeholder", "reshape_input" }))
671.Append(_mlContext.Transforms.Concatenate("Features", "Softmax", "dense/Relu"))
672.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features"));
676var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
683var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
699var reader = _mlContext.Data.CreateTextLoader(columns: new[]
710var pipe = _mlContext.Transforms.Categorical.OneHotEncoding("OneHotLabel", "Label")
711.Append(_mlContext.Transforms.Normalize(new NormalizingEstimator.MinMaxColumnOptions("Features", "Placeholder")))
712.Append(_mlContext.Model.RetrainDnnModel(
724.Append(_mlContext.Transforms.Concatenate("Features", "Prediction"))
725.Append(_mlContext.Transforms.Conversion.MapValueToKey("KeyLabel", "Label", maximumNumberOfKeys: 10))
726.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("KeyLabel", "Features"));
730var metrics = _mlContext.MulticlassClassification.Evaluate(predicted, labelColumnName: "KeyLabel");
733var predictionFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
788var reader = _mlContext.Data.CreateTextLoader(new[]
805preprocessedTrainData = new RowShufflingTransformer(_mlContext, new RowShufflingTransformer.Options()
812preprocessedTestData = new RowShufflingTransformer(_mlContext, new RowShufflingTransformer.Options()
824var pipe = _mlContext.Transforms.CopyColumns("Features", "Placeholder")
825.Append(_mlContext.Model.RetrainDnnModel(
838.Append(_mlContext.Transforms.Concatenate("Features", "Prediction"))
839.AppendCacheCheckpoint(_mlContext)
842.Append(_mlContext.MulticlassClassification.Trainers.LightGbm(new Trainers.LightGbm.LightGbmMulticlassTrainer.Options()
852var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
857var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
881var reader = _mlContext.Data.CreateTextLoader(columns: new[]
893var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder")
894.Append(_mlContext.Model.LoadTensorFlowModel("mnist_model").ScoreTensorFlowModel(new[] { "Softmax", "dense/Relu" }, new[] { "Placeholder", "reshape_input" }))
895.Append(_mlContext.Transforms.Concatenate("Features", new[] { "Softmax", "dense/Relu" }))
896.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features"));
900var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
909var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
1002_mlContext.Log += (sender, e) => logMessages.Add(e.Message);
1003using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1012var data = _mlContext.Data.LoadFromTextFile(dataFile,
1020var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder,
1022.Append(new ImageResizingEstimator(_mlContext, "ImageCropped",
1024.Append(new ImagePixelExtractingEstimator(_mlContext, "Input",
1062using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1071var data = _mlContext.Data.LoadFromTextFile(dataFile, columns: new[]
1077var images = _mlContext.Transforms.LoadImages("ImageReal", imageFolder, "ImagePath").Fit(data).Transform(data);
1078var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", imageWidth, imageHeight, "ImageReal").Fit(images).Transform(images);
1079var pixels = _mlContext.Transforms.ExtractPixels("Input", "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped);
1106using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1114var dataObjects = InMemoryImage.LoadFromTsv(_mlContext, dataFile, imageFolder);
1116var dataView = _mlContext.Data.LoadFromEnumerable<InMemoryImage>(dataObjects);
1117var pipeline = _mlContext.Transforms.ResizeImages("ResizedImage", imageWidth, imageHeight, nameof(InMemoryImage.LoadedImage))
1118.Append(_mlContext.Transforms.ExtractPixels("Input", "ResizedImage", interleavePixelColors: true))
1120.Append(_mlContext.Transforms.Conversion.MapValueToKey("Label"))
1121.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes("Label", "Output"));
1123var cross = _mlContext.MulticlassClassification.CrossValidate(dataView, pipeline, 2);
1134var schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
1150var data = TextLoader.Create(_mlContext, new TextLoader.Options()
1159var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath"))
1160.Append(new ImageResizingEstimator(_mlContext, "ImageCropped", imageHeight, imageWidth, "ImageReal"))
1161.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true))
1162.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input"))
1163.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output"))
1164.Append(new ValueToKeyMappingEstimator(_mlContext, "Label"))
1165.AppendCacheCheckpoint(_mlContext)
1166.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes());
1173var metrics = _mlContext.MulticlassClassification.Evaluate(transformedData);
1176var predictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(transformer);
1186_mlContext.Model.Save(transformer, data.Schema, mlModelLocation);
1194var testTransformer = _mlContext.Model.Load(mlModelLocation, out loadedInputschema);
1199var testPredictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(testTransformer);
1226var data = _mlContext.Data.LoadFromTextFile(dataFile,
1233var images = new ImageLoadingTransformer(_mlContext, imageFolder, ("ImageReal", "ImagePath")).Transform(data);
1234var cropped = new ImageResizingTransformer(_mlContext, "ImageCropped", imageWidth, imageHeight, "ImageReal").Transform(images);
1235var pixels = new ImagePixelExtractingTransformer(_mlContext, "Input", "ImageCropped").Transform(cropped);
1237using TensorFlowModel model = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1267var dataView = _mlContext.Data.LoadFromEnumerable(data);
1269var lookupMap = _mlContext.Data.LoadFromTextFile(@"sentiment_model/imdb_word_index.csv",
1283var estimator = _mlContext.Transforms.Text.TokenizeIntoWords("TokenizedWords", "Sentiment_Text")
1284.Append(_mlContext.Transforms.Conversion.MapValue(lookupMap, lookupMap.Schema["Words"], lookupMap.Schema["Ids"],
1287var dataPipe = _mlContext.Model.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(model);
1292using var pipelineModel = _mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel(new[] { "Prediction/Softmax" }, new[] { "Features" })
1293.Append(_mlContext.Transforms.CopyColumns("Prediction", "Prediction/Softmax"))
1295using var tfEnginePipe = _mlContext.Model.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(pipelineModel);
1346using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(@"model_string_test");
1351var dataview = _mlContext.Data.CreateTextLoader<TextInput>().Load(new MultiFileSource(null));
1354.Append(_mlContext.Transforms.CopyColumns(new[] { new InputOutputColumnPair("AOut", "Original_A"), new InputOutputColumnPair("BOut", "Joined_Splited_Text") }));
1355var transformer = _mlContext.Model.CreatePredictionEngine<TextInput, TextOutput>(pipeline.Fit(dataview));
1373using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(@"model_primitive_input_test");
1380var dataview = _mlContext.Data.CreateTextLoader<PrimitiveInput>().Load(new MultiFileSource(null));
1385var transformer = _mlContext.Model.CreatePredictionEngine<PrimitiveInput, PrimitiveOutput>(pipeline.Fit(dataview));
1406IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1407_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1409shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1415TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1421var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1422.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification("Label", "Image")
1423.Append(_mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel", inputColumnName: "PredictedLabel"))); ;
1427_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1433loadedModel = _mlContext.Model.Load(file, out schema);
1437var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1481IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1482_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1484shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1490TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1495var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1524var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1525.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options)
1526.Append(_mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel", inputColumnName: "PredictedLabel")));
1530_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1536loadedModel = _mlContext.Model.Load(file, out schema);
1540var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1548using var predictionEngine = _mlContext.Model
1613IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1614_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1616shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1622TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1627var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1682var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1683.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options))
1684.Append(_mlContext.Transforms.Conversion.MapKeyToValue(
1689_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1695loadedModel = _mlContext.Model.Load(file, out schema);
1699var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1707using var predictionEngine = _mlContext.Model
1768IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1769_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1771shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1777TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1784var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1816var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1817.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options));
1820_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1826loadedModel = _mlContext.Model.Load(file, out schema);
1829var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1857IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1858_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1860shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1862.Append(_mlContext.Transforms.LoadRawImageBytes("Image", fullImagesetFolderPath, "ImagePath"))
1867TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1888var pipeline = _mlContext.MulticlassClassification.Trainers.ImageClassification(options);
1891_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1897loadedModel = _mlContext.Model.Load(file, out schema);
1900var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1989using (var ch = (_mlContext as IHostEnvironment).Start("Ensuring image files are present."))
1991var ensureModel = ResourceManagerUtils.Instance.EnsureResourceAsync(_mlContext, ch, url, destFileName, destDir, timeout);
2056IDataView data = _mlContext.Data.LoadFromTextFile(dataFile, new[] {
2063using (var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation))
2065var pipeline = _mlContext.Transforms.LoadImages("Input", imageFolder, "imagePath")
2066.Append(_mlContext.Transforms.ResizeImages("Input", imageHeight, imageWidth))
2067.Append(_mlContext.Transforms.ExtractPixels("Input", interleavePixelColors: true))