176 references to _mlContext
Microsoft.ML.TensorFlow.Tests (176)
TensorflowTests.cs (176)
139var data = TextLoader.Create(_mlContext, new TextLoader.Options()
148var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath"))
149.Append(new ImageResizingEstimator(_mlContext, "ImageCropped", imageHeight, imageWidth, "ImageReal"))
150.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true))
151.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input"))
152.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output"))
153.Append(new ValueToKeyMappingEstimator(_mlContext, "Label"))
154.AppendCacheCheckpoint(_mlContext)
155.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy());
161var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
164var predictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(transformer);
188var loader = _mlContext.Data.LoadFromEnumerable(
199using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
287var loader = _mlContext.Data.LoadFromEnumerable(data);
291using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
409var loader = _mlContext.Data.LoadFromEnumerable(data);
413using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
505var data = _mlContext.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile));
506var images = new ImageLoadingTransformer(_mlContext, imageFolder, ("ImageReal", "ImagePath")).Transform(data);
507var cropped = new ImageResizingTransformer(_mlContext, "ImageCropped", 32, 32, "ImageReal").Transform(images);
509var pixels = _mlContext.Transforms.ExtractPixels("image_tensor", "ImageCropped", outputAsFloatArray: false).Fit(cropped).Transform(cropped);
510using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
541var reader = _mlContext.Data.CreateTextLoader(
553var images = _mlContext.Transforms.LoadImages("ImageReal", "ImagePath", imageFolder).Fit(data).Transform(data);
554var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", 224, 224, "ImageReal").Fit(images).Transform(images);
555var pixels = _mlContext.Transforms.ExtractPixels(inputName, "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped);
556using var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
579var schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
640schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
654var reader = _mlContext.Data.CreateTextLoader(
668var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder")
669.Append(_mlContext.Model.LoadTensorFlowModel("mnist_model/frozen_saved_model.pb").ScoreTensorFlowModel(new[] { "Softmax", "dense/Relu" }, new[] { "Placeholder", "reshape_input" }))
670.Append(_mlContext.Transforms.Concatenate("Features", "Softmax", "dense/Relu"))
671.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features"));
675var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
682var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
698var reader = _mlContext.Data.CreateTextLoader(columns: new[]
709var pipe = _mlContext.Transforms.Categorical.OneHotEncoding("OneHotLabel", "Label")
710.Append(_mlContext.Transforms.Normalize(new NormalizingEstimator.MinMaxColumnOptions("Features", "Placeholder")))
711.Append(_mlContext.Model.RetrainDnnModel(
723.Append(_mlContext.Transforms.Concatenate("Features", "Prediction"))
724.Append(_mlContext.Transforms.Conversion.MapValueToKey("KeyLabel", "Label", maximumNumberOfKeys: 10))
725.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("KeyLabel", "Features"));
729var metrics = _mlContext.MulticlassClassification.Evaluate(predicted, labelColumnName: "KeyLabel");
732var predictionFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
787var reader = _mlContext.Data.CreateTextLoader(new[]
804preprocessedTrainData = new RowShufflingTransformer(_mlContext, new RowShufflingTransformer.Options()
811preprocessedTestData = new RowShufflingTransformer(_mlContext, new RowShufflingTransformer.Options()
823var pipe = _mlContext.Transforms.CopyColumns("Features", "Placeholder")
824.Append(_mlContext.Model.RetrainDnnModel(
837.Append(_mlContext.Transforms.Concatenate("Features", "Prediction"))
838.AppendCacheCheckpoint(_mlContext)
841.Append(_mlContext.MulticlassClassification.Trainers.LightGbm(new Trainers.LightGbm.LightGbmMulticlassTrainer.Options()
851var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
856var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
880var reader = _mlContext.Data.CreateTextLoader(columns: new[]
892var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder")
893.Append(_mlContext.Model.LoadTensorFlowModel("mnist_model").ScoreTensorFlowModel(new[] { "Softmax", "dense/Relu" }, new[] { "Placeholder", "reshape_input" }))
894.Append(_mlContext.Transforms.Concatenate("Features", new[] { "Softmax", "dense/Relu" }))
895.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features"));
899var metrics = _mlContext.MulticlassClassification.Evaluate(predicted);
908var predictFunction = _mlContext.Model.CreatePredictionEngine<MNISTData, MNISTPrediction>(trainedModel);
1001_mlContext.Log += (sender, e) => logMessages.Add(e.Message);
1002using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1011var data = _mlContext.Data.LoadFromTextFile(dataFile,
1019var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder,
1021.Append(new ImageResizingEstimator(_mlContext, "ImageCropped",
1023.Append(new ImagePixelExtractingEstimator(_mlContext, "Input",
1061using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1070var data = _mlContext.Data.LoadFromTextFile(dataFile, columns: new[]
1076var images = _mlContext.Transforms.LoadImages("ImageReal", imageFolder, "ImagePath").Fit(data).Transform(data);
1077var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", imageWidth, imageHeight, "ImageReal").Fit(images).Transform(images);
1078var pixels = _mlContext.Transforms.ExtractPixels("Input", "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped);
1105using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1113var dataObjects = InMemoryImage.LoadFromTsv(_mlContext, dataFile, imageFolder);
1115var dataView = _mlContext.Data.LoadFromEnumerable<InMemoryImage>(dataObjects);
1116var pipeline = _mlContext.Transforms.ResizeImages("ResizedImage", imageWidth, imageHeight, nameof(InMemoryImage.LoadedImage))
1117.Append(_mlContext.Transforms.ExtractPixels("Input", "ResizedImage", interleavePixelColors: true))
1119.Append(_mlContext.Transforms.Conversion.MapValueToKey("Label"))
1120.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes("Label", "Output"));
1122var cross = _mlContext.MulticlassClassification.CrossValidate(dataView, pipeline, 2);
1133var schema = TensorFlowUtils.GetModelSchema(_mlContext, modelLocation);
1149var data = TextLoader.Create(_mlContext, new TextLoader.Options()
1158var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath"))
1159.Append(new ImageResizingEstimator(_mlContext, "ImageCropped", imageHeight, imageWidth, "ImageReal"))
1160.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true))
1161.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input"))
1162.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output"))
1163.Append(new ValueToKeyMappingEstimator(_mlContext, "Label"))
1164.AppendCacheCheckpoint(_mlContext)
1165.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes());
1172var metrics = _mlContext.MulticlassClassification.Evaluate(transformedData);
1175var predictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(transformer);
1185_mlContext.Model.Save(transformer, data.Schema, mlModelLocation);
1191var testTransformer = _mlContext.Model.Load(mlModelLocation, out loadedInputschema);
1196var testPredictFunction = _mlContext.Model.CreatePredictionEngine<CifarData, CifarPrediction>(testTransformer);
1223var data = _mlContext.Data.LoadFromTextFile(dataFile,
1230var images = new ImageLoadingTransformer(_mlContext, imageFolder, ("ImageReal", "ImagePath")).Transform(data);
1231var cropped = new ImageResizingTransformer(_mlContext, "ImageCropped", imageWidth, imageHeight, "ImageReal").Transform(images);
1232var pixels = new ImagePixelExtractingTransformer(_mlContext, "Input", "ImageCropped").Transform(cropped);
1234using TensorFlowModel model = _mlContext.Model.LoadTensorFlowModel(modelLocation);
1264var dataView = _mlContext.Data.LoadFromEnumerable(data);
1266var lookupMap = _mlContext.Data.LoadFromTextFile(@"sentiment_model/imdb_word_index.csv",
1280var estimator = _mlContext.Transforms.Text.TokenizeIntoWords("TokenizedWords", "Sentiment_Text")
1281.Append(_mlContext.Transforms.Conversion.MapValue(lookupMap, lookupMap.Schema["Words"], lookupMap.Schema["Ids"],
1284var dataPipe = _mlContext.Model.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(model);
1289using var pipelineModel = _mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel(new[] { "Prediction/Softmax" }, new[] { "Features" })
1290.Append(_mlContext.Transforms.CopyColumns("Prediction", "Prediction/Softmax"))
1292using var tfEnginePipe = _mlContext.Model.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(pipelineModel);
1343using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(@"model_string_test");
1348var dataview = _mlContext.Data.CreateTextLoader<TextInput>().Load(new MultiFileSource(null));
1351.Append(_mlContext.Transforms.CopyColumns(new[] { new InputOutputColumnPair("AOut", "Original_A"), new InputOutputColumnPair("BOut", "Joined_Splited_Text") }));
1352var transformer = _mlContext.Model.CreatePredictionEngine<TextInput, TextOutput>(pipeline.Fit(dataview));
1370using var tensorFlowModel = _mlContext.Model.LoadTensorFlowModel(@"model_primitive_input_test");
1377var dataview = _mlContext.Data.CreateTextLoader<PrimitiveInput>().Load(new MultiFileSource(null));
1382var transformer = _mlContext.Model.CreatePredictionEngine<PrimitiveInput, PrimitiveOutput>(pipeline.Fit(dataview));
1403IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1404_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1406shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1412TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1418var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1419.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification("Label", "Image")
1420.Append(_mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel", inputColumnName: "PredictedLabel"))); ;
1424_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1430loadedModel = _mlContext.Model.Load(file, out schema);
1434var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1478IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1479_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1481shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1487TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1492var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1521var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1522.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options)
1523.Append(_mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel", inputColumnName: "PredictedLabel")));
1527_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1533loadedModel = _mlContext.Model.Load(file, out schema);
1537var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1545using var predictionEngine = _mlContext.Model
1610IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1611_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1613shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1619TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1624var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1679var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1680.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options))
1681.Append(_mlContext.Transforms.Conversion.MapKeyToValue(
1686_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1692loadedModel = _mlContext.Model.Load(file, out schema);
1696var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1704using var predictionEngine = _mlContext.Model
1765IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1766_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1768shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1774TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1781var validationSet = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1813var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath")
1814.Append(_mlContext.MulticlassClassification.Trainers.ImageClassification(options));
1817_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1823loadedModel = _mlContext.Model.Load(file, out schema);
1826var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1854IDataView shuffledFullImagesDataset = _mlContext.Data.ShuffleRows(
1855_mlContext.Data.LoadFromEnumerable(images), seed: 1);
1857shuffledFullImagesDataset = _mlContext.Transforms.Conversion
1859.Append(_mlContext.Transforms.LoadRawImageBytes("Image", fullImagesetFolderPath, "ImagePath"))
1864TrainTestData trainTestData = _mlContext.Data.TrainTestSplit(
1885var pipeline = _mlContext.MulticlassClassification.Trainers.ImageClassification(options);
1888_mlContext.Model.Save(trainedModel, shuffledFullImagesDataset.Schema,
1894loadedModel = _mlContext.Model.Load(file, out schema);
1897var metrics = _mlContext.MulticlassClassification.Evaluate(predictions);
1986using (var ch = (_mlContext as IHostEnvironment).Start("Ensuring image files are present."))
1988var ensureModel = ResourceManagerUtils.Instance.EnsureResourceAsync(_mlContext, ch, url, destFileName, destDir, timeout);
2053IDataView data = _mlContext.Data.LoadFromTextFile(dataFile, new[] {
2060using (var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation))
2062var pipeline = _mlContext.Transforms.LoadImages("Input", imageFolder, "imagePath")
2063.Append(_mlContext.Transforms.ResizeImages("Input", imageHeight, imageWidth))
2064.Append(_mlContext.Transforms.ExtractPixels("Input", interleavePixelColors: true))