4 writes to NumGoodRows
Microsoft.ML.StandardTrainers (4)
Standard\LogisticRegression\LbfgsPredictorBase.cs (4)
472
NumGoodRows
= 0;
535
NumGoodRows
= cursor.KeptRowCount;
574
NumGoodRows
= 0;
639
NumGoodRows
= cursor.KeptRowCount;
17 references to NumGoodRows
Microsoft.ML.StandardTrainers (17)
Standard\LogisticRegression\LbfgsPredictorBase.cs (7)
321
? new L1Optimizer(Host, BiasCount, L1Weight /
NumGoodRows
, MemorySize, DenseOptimizer, null, EnforceNonNegativity)
539
ch.Check(
NumGoodRows
> 0, NoTrainingInstancesMessage);
556
OneDalLbfgs.LogisticRegressionCompute(featuresPtr, labelsPtr, weightsPtr, useSampleWeights, betaPtr,
NumGoodRows
, nFeatures, ClassCount, L1Weight, L2Weight, OptTol, MaxIterations, MemorySize, numThreads);
642
ch.Check(
NumGoodRows
> 0, NoTrainingInstancesMessage);
653
if (numThreads > 1 &&
NumGoodRows
/ numThreads < 10)
655
int numNew = Math.Max(1, (int)
NumGoodRows
/ 100);
664
int cinstTot = (int)
NumGoodRows
;
Standard\LogisticRegression\LogisticRegression.cs (6)
224
Contracts.Assert(
NumGoodRows
> 0);
231
ch.Info("Model trained with {0} training examples.",
NumGoodRows
);
254
ch.Info("Residual Deviance: \t{0} (on {1} degrees of freedom)", deviance, Math.Max(
NumGoodRows
- numParams, 0));
262
ch.Info("Null Deviance: \t{0} (on {1} degrees of freedom)", nullDeviance,
NumGoodRows
- 1);
312
_stats = new ModelStatisticsBase(Host,
NumGoodRows
, numParams, deviance, nullDeviance);
414
_stats = new LinearModelParameterStatistics(Host,
NumGoodRows
, numParams, deviance, nullDeviance, std, weightsOnly, bias);
Standard\LogisticRegression\MulticlassLogisticRegression.cs (3)
312
Contracts.Assert(
NumGoodRows
> 0);
319
ch.Info("Model trained with {0} training examples.",
NumGoodRows
);
359
_stats = new ModelStatisticsBase(Host,
NumGoodRows
, numParams, deviance, nullDeviance);
Standard\PoissonRegression\PoissonRegression.cs (1)
153
return base.DifferentiableFunction(in x, ref gradient, progress) + (float)(_lossNormalizer /
NumGoodRows
);