8 writes to Bias
Microsoft.ML.StandardTrainers (8)
Standard\Online\AveragedLinear.cs (3)
213
Bias
= TotalBias / (float)NumWeightUpdates;
254
Bias
+= biasUpdate;
272
Bias
= TotalBias / (float)NumWeightUpdates;
Standard\Online\LinearSvm.cs (2)
145
Bias
= 0;
238
Bias
+= rate / _numBatchExamples * _biasUpdate;
Standard\Online\OnlineLinear.cs (3)
142
Bias
= predictor.Bias;
159
Bias
= float.Parse(weightStr[numFeatures], CultureInfo.InvariantCulture);
167
Bias
= parent.OnlineLinearTrainerOptions.InitialWeightsDiameter * (parent.Host.Rand.NextSingle() - (float)0.5);
13 references to Bias
Microsoft.ML.StandardTrainers (13)
Standard\Online\AveragedLinear.cs (4)
200
TotalBias +=
Bias
* NumNoUpdates;
237
TotalBias +=
Bias
* NumNoUpdates * WeightsScale;
285
TotalBias +=
Bias
;
290
TotalBias += Gain *
Bias
;
Standard\Online\AveragedPerceptron.cs (1)
139
bias =
Bias
;
Standard\Online\LinearSvm.cs (3)
236
Contracts.Assert(!_noBias ||
Bias
== 0);
258
=>
Bias
+ VectorUtils.DotProduct(in feat, in Weights) * WeightsScale;
264
return new LinearBinaryModelParameters(ParentHost, Weights,
Bias
);
Standard\Online\OnlineGradientDescent.cs (1)
116
bias =
Bias
;
Standard\Online\OnlineLinear.cs (4)
112
/// The implicit scaling factor for <see cref="Weights"/>. Note that this does not affect <see cref="
Bias
"/>.
130
ch.Assert(
Bias
== 0);
237
=>
Bias
+ VectorUtils.DotProduct(in feat, in Weights) * WeightsScale;
298
float maxNorm = Math.Max(VectorUtils.MaxNorm(in state.Weights), Math.Abs(state.
Bias
));