8 writes to Bias
Microsoft.ML.StandardTrainers (8)
Standard\Online\AveragedLinear.cs (3)
213Bias = TotalBias / (float)NumWeightUpdates; 254Bias += biasUpdate; 272Bias = TotalBias / (float)NumWeightUpdates;
Standard\Online\LinearSvm.cs (2)
145Bias = 0; 238Bias += rate / _numBatchExamples * _biasUpdate;
Standard\Online\OnlineLinear.cs (3)
142Bias = predictor.Bias; 159Bias = float.Parse(weightStr[numFeatures], CultureInfo.InvariantCulture); 167Bias = parent.OnlineLinearTrainerOptions.InitialWeightsDiameter * (parent.Host.Rand.NextSingle() - (float)0.5);
13 references to Bias
Microsoft.ML.StandardTrainers (13)
Standard\Online\AveragedLinear.cs (4)
200TotalBias += Bias * NumNoUpdates; 237TotalBias += Bias * NumNoUpdates * WeightsScale; 285TotalBias += Bias; 290TotalBias += Gain * Bias;
Standard\Online\AveragedPerceptron.cs (1)
139bias = Bias;
Standard\Online\LinearSvm.cs (3)
236Contracts.Assert(!_noBias || Bias == 0); 258=> Bias + VectorUtils.DotProduct(in feat, in Weights) * WeightsScale; 264return new LinearBinaryModelParameters(ParentHost, Weights, Bias);
Standard\Online\OnlineGradientDescent.cs (1)
116bias = Bias;
Standard\Online\OnlineLinear.cs (4)
112/// The implicit scaling factor for <see cref="Weights"/>. Note that this does not affect <see cref="Bias"/>. 130ch.Assert(Bias == 0); 237=> Bias + VectorUtils.DotProduct(in feat, in Weights) * WeightsScale; 298float maxNorm = Math.Max(VectorUtils.MaxNorm(in state.Weights), Math.Abs(state.Bias));