2 instantiations of SdcaLogisticRegressionBinaryTrainer
Microsoft.ML.StandardTrainers (2)
StandardTrainersCatalog.cs (2)
214
return new
SdcaLogisticRegressionBinaryTrainer
(env, labelColumnName, featureColumnName, exampleWeightColumnName, l2Regularization, l1Regularization, maximumNumberOfIterations);
236
return new
SdcaLogisticRegressionBinaryTrainer
(env, options);
35 references to SdcaLogisticRegressionBinaryTrainer
Microsoft.ML.AutoML (9)
API\AutoCatalog.cs (4)
325
/// <param name="useSdcaLogisticRegression">true if use <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> as available trainer.</param>
335
/// <param name="sdcaLogisticRegressionSearchSpace">if provided, use it as search space for <see cref="
SdcaLogisticRegressionBinaryTrainer
"/>, otherwise the default search space will be used.</param>
418
/// <param name="useSdcaLogisticRegression">true if use <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> as available trainer.</param>
432
/// <param name="sdcaLogisticRegressionSearchSpace">if provided, use it as search space for <see cref="
SdcaLogisticRegressionBinaryTrainer
"/>, otherwise the default search space will be used.</param>
API\BinaryClassificationExperiment.cs (1)
127
/// See <see cref="
SdcaLogisticRegressionBinaryTrainer
"/>.
SweepableEstimator\Estimators\Sdca.cs (3)
49
var option = new
SdcaLogisticRegressionBinaryTrainer
.Options()
67
var option = new
SdcaLogisticRegressionBinaryTrainer
.Options()
77
var
binaryTrainer = context.BinaryClassification.Trainers.SdcaLogisticRegression(option);
TrainerExtensions\BinaryTrainerExtensions.cs (1)
160
var options = TrainerExtensionUtil.CreateOptions<
SdcaLogisticRegressionBinaryTrainer
.Options>(sweepParams, columnInfo.LabelColumnName);
Microsoft.ML.IntegrationTests (3)
DataTransformation.cs (1)
146
new
SdcaLogisticRegressionBinaryTrainer
.Options { NumberOfThreads = 1 }));
Training.cs (2)
45
var
sdcaTrainer = mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
46
new
SdcaLogisticRegressionBinaryTrainer
.Options { NumberOfThreads = 1 });
Microsoft.ML.Samples (4)
Dynamic\Trainers\BinaryClassification\SdcaLogisticRegression.cs (1)
35
var
pipeline = mlContext.BinaryClassification.Trainers
Dynamic\Trainers\BinaryClassification\SdcaLogisticRegressionWithOptions.cs (2)
36
var options = new
SdcaLogisticRegressionBinaryTrainer
.Options()
47
var
pipeline = mlContext.BinaryClassification.Trainers
Dynamic\Transforms\CalculateFeatureContributionCalibrated.cs (1)
36
var
linearTrainer = mlContext.BinaryClassification.Trainers
Microsoft.ML.SearchSpace.Tests (1)
SearchSpaceTest.cs (1)
285
CreateAndVerifyDefaultSearchSpace<
SdcaLogisticRegressionBinaryTrainer
.Options>();
Microsoft.ML.StandardTrainers (10)
Standard\SdcaBinary.cs (5)
1440
/// (2) <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> essentially trains a regularized logistic regression model. Because logistic regression
1584
/// <seealso cref="StandardTrainersCatalog.SdcaLogisticRegression(BinaryClassificationCatalog.BinaryClassificationTrainers,
SdcaLogisticRegressionBinaryTrainer
.Options)"/>
1590
/// Options for the <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> as used in
1740
/// Comparing with <see cref="
SdcaLogisticRegressionBinaryTrainer
.CreatePredictor(VBuffer{float}[], float[])"/>,
2011
/// Continues the training of a <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> using an already trained <paramref name="modelParameters"/> and returns a <see cref="BinaryPredictionTransformer"/>.
StandardTrainersCatalog.cs (5)
188
/// Create <see cref="
SdcaLogisticRegressionBinaryTrainer
"/>, which predicts a target using a linear classification model.
203
public static
SdcaLogisticRegressionBinaryTrainer
SdcaLogisticRegression(
218
/// Create <see cref="
SdcaLogisticRegressionBinaryTrainer
"/> with advanced options, which predicts a target using a linear classification model.
228
public static
SdcaLogisticRegressionBinaryTrainer
SdcaLogisticRegression(
230
SdcaLogisticRegressionBinaryTrainer
.Options options)
Microsoft.ML.Tests (8)
TrainerEstimators\SdcaTests.cs (7)
31
var
binaryTrainer = ML.BinaryClassification.Trainers.SdcaLogisticRegression(
32
new
SdcaLogisticRegressionBinaryTrainer
.Options { ConvergenceTolerance = 1e-2f, MaximumNumberOfIterations = 10 });
75
var
pipeline = mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(labelColumnName: "Label", featureColumnName: "Features", l2Regularization: 0.001f);
118
var
sdcaWithoutWeightBinary = mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
119
new
SdcaLogisticRegressionBinaryTrainer
.Options { NumberOfThreads = 1 });
120
var
sdcaWithWeightBinary = mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
121
new
SdcaLogisticRegressionBinaryTrainer
.Options { ExampleWeightColumnName = "Weight", NumberOfThreads = 1 });
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (1)
338
var
naivePipeline = ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "Features");