4 writes to NumberOfIterations
Microsoft.ML.Samples (2)
Dynamic\Trainers\BinaryClassification\SgdCalibratedWithOptions.cs (1)
33NumberOfIterations = 30,
Dynamic\Trainers\BinaryClassification\SgdNonCalibratedWithOptions.cs (1)
31NumberOfIterations = 10,
Microsoft.ML.StandardTrainers (1)
Standard\SdcaBinary.cs (1)
1980_options.NumberOfIterations = maxIterations;
Microsoft.ML.Tests (1)
TrainerEstimators\TrainerEstimators.cs (1)
93ML.BinaryClassification.Trainers.SgdCalibrated(new Trainers.SgdCalibratedTrainer.Options(){ L2Regularization = 0, NumberOfIterations = 80})};
10 references to NumberOfIterations
Microsoft.ML.StandardTrainers (10)
Standard\SdcaBinary.cs (10)
1920env.CheckUserArg(NumberOfIterations > 0, nameof(NumberOfIterations), "Must be positive."); 2072if (e % checkFrequency == 0 && e != _options.NumberOfIterations) 2098pch.Checkpoint(loss, improvement, e, _options.NumberOfIterations); 2108var trainingTasks = new Action<Random, IProgressChannel>[_options.NumberOfIterations]; 2109var rands = new Random[_options.NumberOfIterations]; 2112for (int epoch = 1; epoch <= _options.NumberOfIterations; epoch++) 2173entry => entry.SetProgress(0, iter, _options.NumberOfIterations)); 2175for (int i = 0; i < _options.NumberOfIterations; i++) 2193Parallel.For(0, _options.NumberOfIterations, pOptions, i => trainingTasks[i](rands[i], pch));