|
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectSeasonality
{
public static void Example()
{
/* Create a new ML context, for ML.NET operations. It can be used for
exception tracking and logging, as well as the source of randomness.*/
var mlContext = new MLContext();
// Create a seasonal data as input: y = sin(2 * Pi + x)
var seasonalData = Enumerable.Range(0, 100).Select(x => new TimeSeriesData(Math.Sin(2 * Math.PI + x)));
// Load the input data as a DataView.
var dataView = mlContext.Data.LoadFromEnumerable(seasonalData);
/* Two option parameters:
* seasonalityWindowSize: Default value is -1. When set to -1, use the whole input to fit model;
* when set to a positive integer, only the first windowSize number of values will be considered.
* randomnessThreshold: Randomness threshold that specifies how confidence the input values follows
* a predictable pattern recurring as seasonal data. By default, it is set as 0.99.
* The higher the threshold is set, the more strict recurring pattern the
* input values should follow to be determined as seasonal data.
*/
int period = mlContext.AnomalyDetection.DetectSeasonality(
dataView,
nameof(TimeSeriesData.Value),
seasonalityWindowSize: 40);
// Print the Seasonality Period result.
Console.WriteLine($"Seasonality Period: #{period}");
}
private class TimeSeriesData
{
public double Value;
public TimeSeriesData(double value)
{
Value = value;
}
}
}
}
|