|
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class FeaturizeText
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<TextData>()
{
new TextData(){ Text = "ML.NET's FeaturizeText API uses a " +
"composition of several basic transforms to convert text " +
"into numeric features." },
new TextData(){ Text = "This API can be used as a featurizer to " +
"perform text classification." },
new TextData(){ Text = "There are a number of approaches to text " +
"classification." },
new TextData(){ Text = "One of the simplest and most common " +
"approaches is called “Bag of Words”." },
new TextData(){ Text = "Text classification can be used for a " +
"wide variety of tasks" },
new TextData(){ Text = "such as sentiment analysis, topic " +
"detection, intent identification etc." },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline for converting text into numeric features.
// The following call to 'FeaturizeText' instantiates
// 'TextFeaturizingEstimator' with default parameters.
// The default settings for the TextFeaturizingEstimator are
// * StopWordsRemover: None
// * CaseMode: Lowercase
// * OutputTokensColumnName: None
// * KeepDiacritics: false, KeepPunctuations: true, KeepNumbers:
// true
// * WordFeatureExtractor: NgramLength = 1
// * CharFeatureExtractor: NgramLength = 3, UseAllLengths = false
// The length of the output feature vector depends on these settings.
var textPipeline = mlContext.Transforms.Text.FeaturizeText("Features",
"Text");
// Fit to data.
var textTransformer = textPipeline.Fit(dataview);
// Create the prediction engine to get the features extracted from the
// text.
var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
TransformedTextData>(textTransformer);
// Convert the text into numeric features.
var prediction = predictionEngine.Predict(samples[0]);
// Print the length of the feature vector.
Console.WriteLine($"Number of Features: {prediction.Features.Length}");
// Print the first 10 feature values.
Console.Write("Features: ");
for (int i = 0; i < 10; i++)
Console.Write($"{prediction.Features[i]:F4} ");
// Expected output:
// Number of Features: 332
// Features: 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.1715 ...
}
private class TextData
{
public string Text { get; set; }
}
private class TransformedTextData : TextData
{
public float[] Features { get; set; }
}
}
}
|