3 writes to Graph
Microsoft.ML.OnnxConverter (3)
OnnxMl.cs (2)
1903
Graph
= new global::Microsoft.ML.Model.OnnxConverter.OnnxCSharpToProtoWrapper.GraphProto();
1956
Graph
= new global::Microsoft.ML.Model.OnnxConverter.OnnxCSharpToProtoWrapper.GraphProto();
OnnxUtils.cs (1)
309
model.
Graph
= new GraphProto();
23 references to Graph
Microsoft.ML.OnnxConverter (9)
OnnxMl.cs (8)
1749
if (!object.Equals(
Graph
, other.
Graph
)) return false;
1765
if (graph_ != null) hash ^=
Graph
.GetHashCode();
1816
output.WriteMessage(
Graph
);
1857
size += 1 + pb::CodedOutputStream.ComputeMessageSize(
Graph
);
1905
Graph
.MergeFrom(other.
Graph
);
1958
input.ReadMessage(
Graph
);
OnnxUtils.cs (1)
310
var graph = model.
Graph
;
Microsoft.ML.Tests (14)
OnnxConversionTest.cs (14)
512
var floatScalar = model.
Graph
.Initializer[0];
518
var int64Scalar = model.
Graph
.Initializer[1];
524
var stringScalar = model.
Graph
.Initializer[2];
530
var floatsTensor = model.
Graph
.Initializer[3];
540
var int64sTensor = model.
Graph
.Initializer[4];
550
var stringsTensor = model.
Graph
.Initializer[5];
753
Assert.Equal("Scaler", model.
Graph
.Node[0].OpType);
754
Assert.Equal("LinearRegressor", model.
Graph
.Node[1].OpType);
1630
string[] inputNames = onnxModel.
Graph
.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
1631
string[] outputNames = onnxModel.
Graph
.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();
1739
Assert.True(model.
Graph
.Output.Count == 1);
1740
Assert.Equal("Target1.output", model.
Graph
.Output[0].Name);
1800
string[] inputNames = onnxProtoBufModel.
Graph
.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
1801
string[] outputNames = onnxProtoBufModel.
Graph
.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();