1 write to GbmOptions
Microsoft.ML.LightGbm (1)
LightGbmTrainerBase.cs (1)
356
GbmOptions
= LightGbmTrainerOptions.ToDictionary(Host);
26 references to GbmOptions
Microsoft.ML.LightGbm (26)
LightGbmBinaryTrainer.cs (2)
256
var innerArgs = LightGbmInterfaceUtils.JoinParameters(base.
GbmOptions
);
280
=>
GbmOptions
["objective"] = "binary";
LightGbmMulticlassTrainer.cs (7)
218
var innerArgs = LightGbmInterfaceUtils.JoinParameters(
GbmOptions
);
320
int numberOfLeaves = (int)
GbmOptions
["num_leaves"];
322
GbmOptions
["min_data_per_leaf"] = minimumExampleCountPerLeaf;
326
ch.Info("Auto-tuning parameters: " + nameof(LightGbmTrainerOptions.LearningRate) + " = " +
GbmOptions
["learning_rate"]);
339
GbmOptions
["num_class"] = _numberOfClassesIncludingNan;
353
GbmOptions
["objective"] = "multiclass";
355
GbmOptions
["objective"] = "multiclassova";
LightGbmRankingTrainer.cs (3)
284
var innerArgs = LightGbmInterfaceUtils.JoinParameters(
GbmOptions
);
291
GbmOptions
["objective"] = "lambdarank";
295
GbmOptions
["eval_at"] = "5";
LightGbmRegressionTrainer.cs (2)
220
var innerArgs = LightGbmInterfaceUtils.JoinParameters(
GbmOptions
);
243
GbmOptions
["objective"] = "regression";
LightGbmTrainerBase.cs (12)
389
GbmOptions
["objective"] = split[0].Split('=')[1];
472
GbmOptions
["tree_learner"] = ParallelTraining.ParallelType();
477
GbmOptions
[pair.Key] = pair.Value;
510
GbmOptions
["learning_rate"] = learningRate;
511
GbmOptions
["num_leaves"] = numberOfLeaves;
512
GbmOptions
["min_data_per_leaf"] = minimumExampleCountPerLeaf;
525
internal Dictionary<string, object> GetGbmParameters() =>
GbmOptions
;
637
GbmOptions
["categorical_feature"] = string.Join(",", catIndices);
657
string param = LightGbmInterfaceUtils.JoinParameters(
GbmOptions
);
704
ch.Assert(((ITrainer)this).PredictionKind != PredictionKind.MulticlassClassification ||
GbmOptions
.ContainsKey("num_class"),
710
ch.Info("LightGBM objective={0}",
GbmOptions
["objective"]);
711
using (Booster bst = WrappedLightGbmTraining.Train(Host, ch, pch,
GbmOptions
, dtrain,