2 writes to TrainedEnsemble
Microsoft.ML.LightGbm (2)
LightGbmTrainerBase.cs (2)
430
TrainedEnsemble
= Booster.GetModel(catBoundaries, modelText);
715
TrainedEnsemble
= Booster.GetModel(catMetaData.CategoricalBoudaries, bst.GetModelString());
11 references to TrainedEnsemble
Microsoft.ML.LightGbm (11)
LightGbmBinaryTrainer.cs (2)
255
Host.Check(
TrainedEnsemble
!= null, "The predictor cannot be created before training is complete");
257
var pred = new LightGbmBinaryModelParameters(Host,
TrainedEnsemble
, FeatureCount, innerArgs);
LightGbmMulticlassTrainer.cs (5)
197
for (int i = classID; i <
TrainedEnsemble
.NumTrees; i += _numberOfClassesIncludingNan)
200
if (
TrainedEnsemble
.GetTreeAt(i).NumLeaves > 1)
201
res.AddTree(
TrainedEnsemble
.GetTreeAt(i));
213
Host.Check(
TrainedEnsemble
!= null, "The predictor cannot be created before training is complete.");
216
Host.Assert(
TrainedEnsemble
.NumTrees % _numberOfClassesIncludingNan == 0, "Number of trees should be a multiple of number of classes.");
LightGbmRankingTrainer.cs (2)
283
Host.Check(
TrainedEnsemble
!= null, "The predictor cannot be created before training is complete");
285
return new LightGbmRankingModelParameters(Host,
TrainedEnsemble
, FeatureCount, innerArgs);
LightGbmRegressionTrainer.cs (2)
218
Host.Check(
TrainedEnsemble
!= null,
221
return new LightGbmRegressionModelParameters(Host,
TrainedEnsemble
, FeatureCount, innerArgs);