16 references to VectorUtils
Microsoft.ML.FastTree (16)
Training\EnsembleCompression\LassoBasedEnsembleCompressor.cs (10)
195
double mean =
VectorUtils
.GetMean(_observations[j]);
207
featureStds[j] = Math.Sqrt(
VectorUtils
.GetDotProduct(_observations[j], _observations[j]));
209
VectorUtils
.DivideInPlace(_observations[j], (float)featureStds[j]);
212
float targetMean = (float)
VectorUtils
.GetMean(_targets);
223
float targetStd = (float)Math.Sqrt(
VectorUtils
.GetDotProduct(_targets, _targets));
224
VectorUtils
.DivideInPlace(_targets, targetStd);
228
feature2residualCorrelations[j] =
VectorUtils
.GetDotProduct(_targets, _observations[j]);
231
double[][] feature2featureCorrelations =
VectorUtils
.AllocateDoubleMatrix(_numFeatures, maxAllowedFeaturesAlongPath);
328
feature2featureCorrelations[j][numberOfInputs - 1] =
VectorUtils
.GetDotProduct(_observations[j], _observations[k]);
390
pFeature2residualCorrelations[j] -=
VectorUtils
.GetDotProduct(denseActiveSet, feature2featureCorrelations[j], numberOfInputs);
Training\EnsembleCompression\LassoFit.cs (1)
41
CompressedWeights =
VectorUtils
.AllocateDoubleMatrix(numberOfLambdas, maxAllowedFeaturesAlongPath);
Training\OptimizationAlgorithms\ConjugateGradientDescent.cs (5)
38
double beta =
VectorUtils
.GetDotProduct(_currentGradient,
VectorUtils
.Subtract(_currentGradient, _previousGradient)) /
VectorUtils
.GetDotProduct(_previousGradient, _previousGradient);
47
VectorUtils
.MutiplyInPlace(previousDk, beta);
48
VectorUtils
.AddInPlace(previousDk, _currentGradient);