1 write to TrainData
Microsoft.ML.FastTree (1)
Training\TreeLearners\TreeLearner.cs (1)
19
TrainData
= trainData;
42 references to TrainData
Microsoft.ML.FastTree (42)
Dataset\FeatureFlock.cs (16)
197
int featureMin = learner.
TrainData
.FlockToFirstFeature(flock);
198
int featureLim = featureMin + learner.
TrainData
.Flocks[flock].Count;
204
Contracts.Assert(learner.
TrainData
.FlockToFirstFeature(flock) == feature - subfeature);
211
double trust = learner.
TrainData
.Flocks[flock].Trust(subfeature);
335
int featureMin = learner.
TrainData
.FlockToFirstFeature(flock);
336
int featureLim = featureMin + learner.
TrainData
.Flocks[flock].Count;
380
double trust = learner.
TrainData
.Flocks[flock].Trust(0);
403
Contracts.Assert(learner.
TrainData
.FlockToFirstFeature(flock) == feature - subfeature);
515
int featureMin = learner.
TrainData
.FlockToFirstFeature(flock);
516
int featureLim = featureMin + learner.
TrainData
.Flocks[flock].Count;
547
Contracts.Assert(learner.
TrainData
.FlockToFirstFeature(flock) == feature - subfeature);
600
double trust = learner.
TrainData
.Flocks[flock].Trust(0);
711
int featureMin = learner.
TrainData
.FlockToFirstFeature(flock);
712
int featureLim = featureMin + learner.
TrainData
.Flocks[flock].Count;
743
Contracts.Assert(learner.
TrainData
.FlockToFirstFeature(flock) == feature - subfeature);
822
double trust = learner.
TrainData
.Flocks[flock].Trust(0);
Training\TreeLearners\LeastSquaresRegressionTreeLearner.cs (25)
144
FindBestThresholdForFlockThreadWorker,
TrainData
.NumFlocks);
152
histogramPool[i] = new SufficientStatsBase[
TrainData
.NumFlocks];
153
for (int j = 0; j <
TrainData
.NumFlocks; j++)
156
var ss = histogramPool[i][j] =
TrainData
.Flocks[j].CreateSufficientStats(HasWeights);
162
_sizeOfReservedMemory += (long)IntPtr.Size *
TrainData
.NumFlocks;
168
MakeSplitCandidateArrays(
TrainData
, out SmallerChildSplitCandidates, out LargerChildSplitCandidates);
170
FeatureUseCount = new int[
TrainData
.NumFeatures];
181
_parallelTraining.InitTreeLearner(
TrainData
, numLeaves, MaxCategoricalSplitPointsPerNode, ref MinDocsInLeaf);
298
Contracts.Assert(
TrainData
.Flocks[bestSplitInfo.Flock] is OneHotFeatureFlock);
304
int flockFirstFeatureIndex =
TrainData
.FlockToFirstFeature(bestSplitInfo.Flock);
314
Partitioning.Split(bestLeaf, (
TrainData
.Flocks[bestSplitInfo.Flock] as OneHotFeatureFlock)?.Bins, CategoricalThresholds, gtChild);
317
Partitioning.Split(bestLeaf,
TrainData
.GetIndexer(bestSplitInfo.Feature), bestSplitInfo.Threshold, gtChild);
335
protected bool HasWeights =>
TrainData
?.SampleWeights != null;
339
return
TrainData
.SampleWeights;
355
if (Partitioning.NumDocs ==
TrainData
.NumDocs)
507
int featureMin =
TrainData
.FlockToFirstFeature(flock);
508
int featureLim = featureMin +
TrainData
.Flocks[flock].Count;
582
Contracts.Assert(0 <= min && min <= lim && lim <=
TrainData
.NumFeatures);
661
int featureMin =
TrainData
.FlockToFirstFeature(flock);
662
int featureLim = featureMin +
TrainData
.Flocks[flock].Count;
674
Contracts.Assert(0 <= flock && flock <
TrainData
.NumFlocks);
675
Contracts.Assert(histogram.Flock ==
TrainData
.Flocks[flock]);
677
if (
TrainData
.Flocks[flock].Categorical && leafSplitCandidates.NumDocsInLeaf > 100)
718
double trust =
TrainData
.Flocks[flock].Trust(subfeature);
743
int numBin =
TrainData
.Flocks[flock].BinCount(subfeature);
Training\TreeLearners\TreeLearner.cs (1)
21
Partitioning = new DocumentPartitioning(
TrainData
.NumDocs, numLeaves);