1 write to BinEffects
Microsoft.ML.FastTree (1)
GamTrainer.cs (1)
445
BinEffects
= new double[TrainSet.NumFeatures][];
18 references to BinEffects
Microsoft.ML.FastTree (18)
GamClassification.cs (1)
141
BinUpperBounds,
BinEffects
, MeanEffect, InputLength, FeatureMap);
GamRegression.cs (1)
109
return new GamRegressionModelParameters(Host, BinUpperBounds,
BinEffects
, MeanEffect, InputLength, FeatureMap);
GamTrainer.cs (16)
450
BinEffects
[featureIndex] = new double[numOfBins];
456
BinEffects
[featureIndex][bin] += _subGraph.Splits[featureIndex][iteration].LteValue;
458
BinEffects
[featureIndex][bin] += _subGraph.Splits[featureIndex][iteration].GtValue;
497
var meanEffects = new double[
BinEffects
.Length];
503
for (int featureIndex = 0; featureIndex <
BinEffects
.Length; featureIndex++)
514
newTotalEffect = totalEffect +
BinEffects
[featureIndex][bin];
526
for (int featureIndex = 0; featureIndex <
BinEffects
.Length; featureIndex++)
533
for (int bin = 0; bin <
BinEffects
[featureIndex].Length; ++bin)
534
BinEffects
[featureIndex][bin] -= meanEffects[featureIndex];
552
double value =
BinEffects
[i][0];
553
for (int j = 0; j <
BinEffects
[i].Length; j++)
555
double element =
BinEffects
[i][j];
564
newBinBoundaries.Add(binUpperBound[
BinEffects
[i].Length - 1]);
565
newBinEffects.Add(
BinEffects
[i][
BinEffects
[i].Length - 1]);
569
BinEffects
[i] = newBinEffects.ToArray();