4 instantiations of FastForestBinaryTrainer
Microsoft.ML.FastTree (4)
RandomForestClassification.cs (1)
418
() => new
FastForestBinaryTrainer
(host, input),
TreeEnsembleFeaturizationEstimator.cs (1)
330
var trainer = new
FastForestBinaryTrainer
(Env, _trainerOptions);
TreeTrainersCatalog.cs (2)
415
return new
FastForestBinaryTrainer
(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfLeaves, numberOfTrees, minimumExampleCountPerLeaf);
437
return new
FastForestBinaryTrainer
(env, options);
53 references to FastForestBinaryTrainer
Microsoft.ML.AutoML (7)
API\BinaryClassificationExperiment.cs (1)
107
/// See <see cref="
FastForestBinaryTrainer
"/>.
API\MulticlassClassificationExperiment.cs (1)
86
/// <see cref="OneVersusAllTrainer"/> using <see cref="
FastForestBinaryTrainer
"/>.
SweepableEstimator\Estimators\FastForest.cs (2)
13
var option = new
FastForestBinaryTrainer
.Options()
49
var option = new
FastForestBinaryTrainer
.Options()
TrainerExtensions\BinaryTrainerExtensions.cs (1)
74
var options = TrainerExtensionUtil.CreateOptions<
FastForestBinaryTrainer
.Options>(sweepParams, columnInfo.LabelColumnName);
TrainerExtensions\MultiTrainerExtensions.cs (2)
50
var
binaryTrainer = _binaryLearnerCatalogItem.CreateInstance(mlContext, sweepParams, columnInfo) as
FastForestBinaryTrainer
;
Microsoft.ML.Core.Tests (1)
UnitTests\TestEntryPoints.cs (1)
1529
var
fastForest = new FastForestBinaryTrainer(Env, "Label", "Features");
Microsoft.ML.FastTree (28)
RandomForestClassification.cs (18)
20
[assembly: LoadableClass(
FastForestBinaryTrainer
.Summary, typeof(
FastForestBinaryTrainer
), typeof(
FastForestBinaryTrainer
.Options),
22
FastForestBinaryTrainer
.UserNameValue,
23
FastForestBinaryTrainer
.LoadNameValue,
25
FastForestBinaryTrainer
.ShortName,
56
/// Model parameters for <see cref="
FastForestBinaryTrainer
"/>.
144
/// <seealso cref="TreeExtensions.FastForest(BinaryClassificationCatalog.BinaryClassificationTrainers,
FastForestBinaryTrainer
.Options)"/>
147
RandomForestTrainerBase<
FastForestBinaryTrainer
.Options, BinaryPredictionTransformer<FastForestBinaryModelParameters>, FastForestBinaryModelParameters>
150
/// Options for the <see cref="
FastForestBinaryTrainer
"/> as used in
179
/// Initializes a new instance of <see cref="
FastForestBinaryTrainer
"/>
202
/// Initializes a new instance of <see cref="
FastForestBinaryTrainer
"/> by using the <see cref="Options"/> class.
369
/// Trains a <see cref="
FastForestBinaryTrainer
"/> using both training and validation data, returns
407
Desc =
FastForestBinaryTrainer
.Summary,
408
UserName =
FastForestBinaryTrainer
.UserNameValue,
409
ShortName =
FastForestBinaryTrainer
.ShortName)]
410
public static CommonOutputs.BinaryClassificationOutput TrainBinary(IHostEnvironment env,
FastForestBinaryTrainer
.Options input)
417
return TrainerEntryPointsUtils.Train<
FastForestBinaryTrainer
.Options, CommonOutputs.BinaryClassificationOutput>(host, input,
TreeEnsembleFeaturizationEstimator.cs (4)
309
private readonly
FastForestBinaryTrainer
.Options _trainerOptions;
317
/// The configuration of <see cref="
FastForestBinaryTrainer
"/> used to train the underlying <see cref="TreeEnsembleModelParameters"/>.
319
public
FastForestBinaryTrainer
.Options TrainerOptions;
330
var
trainer = new FastForestBinaryTrainer(Env, _trainerOptions);
TreeTrainersCatalog.cs (6)
389
/// Create <see cref="
FastForestBinaryTrainer
"/>, which predicts a target using a decision tree regression model.
405
public static
FastForestBinaryTrainer
FastForest(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog,
419
/// Create <see cref="
FastForestBinaryTrainer
"/> with advanced options, which predicts a target using a decision tree regression model.
430
public static
FastForestBinaryTrainer
FastForest(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog,
431
FastForestBinaryTrainer
.Options options)
504
/// Create <see cref="FastForestBinaryFeaturizationEstimator"/>, which uses <see cref="
FastForestBinaryTrainer
"/> to train <see cref="TreeEnsembleModelParameters"/> to create tree-based features.
Microsoft.ML.Samples (4)
Dynamic\Trainers\BinaryClassification\FastForest.cs (1)
30
var
pipeline = mlContext.BinaryClassification.Trainers
Dynamic\Trainers\BinaryClassification\FastForestWithOptions.cs (2)
31
var options = new
FastForestBinaryTrainer
.Options
42
var
pipeline = mlContext.BinaryClassification.Trainers
Dynamic\Transforms\TreeFeaturization\FastForestBinaryFeaturizationWithOptions.cs (1)
46
var trainerOptions = new
FastForestBinaryTrainer
.Options
Microsoft.ML.Samples.OneDal (3)
Program.cs (3)
71
FastForestBinaryTrainer
.Options options = new
FastForestBinaryTrainer
.Options();
79
var
trainer = mlContext.BinaryClassification.Trainers.FastForest(options);
Microsoft.ML.Tests (10)
PermutationFeatureImportanceTests.cs (1)
488
var
ff = ML.BinaryClassification.Trainers.FastForest();
TrainerEstimators\OneDalEstimators.cs (3)
64
FastForestBinaryTrainer
.Options options = new
FastForestBinaryTrainer
.Options();
72
var
trainer = ML.BinaryClassification.Trainers.FastForest(options);
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (3)
184
var
trainer = ML.BinaryClassification.Trainers.FastForest(
185
new
FastForestBinaryTrainer
.Options
396
var trainerOptions = new
FastForestBinaryTrainer
.Options
TrainerEstimators\TreeEstimators.cs (3)
152
var
trainer = ML.BinaryClassification.Trainers.FastForest(
153
new
FastForestBinaryTrainer
.Options
1007
new
FastForestBinaryTrainer
.Options { NumberOfTrees = 2, NumberOfThreads = 1, NumberOfLeaves = 4, CategoricalSplit = true }));