1 write to _documents
Microsoft.ML.FastTree (1)
Training\DocumentPartitioning.cs (1)
39
_documents
= new int[numDocuments];
27 references to _documents
Microsoft.ML.FastTree (27)
Training\DocumentPartitioning.cs (27)
110
Contracts.Assert(
_documents
.Length == _leafBegin[tree.NumLeaves - 1] + _leafCount[tree.NumLeaves - 1]);
123
_documents
[documentPos++] = d;
138
get { return
_documents
.Length; }
143
get { return
_documents
; }
153
_leafCount[0] =
_documents
.Length;
156
for (int d = 0; d <
_documents
.Length; ++d)
157
_documents
[d] = d;
161
for (int d = 0; d <
_documents
.Length; ++d)
162
_documents
[d] = _initialDocuments[d];
184
distributionWeights[count] = weights[
_documents
[randInst]];
186
dist[count++] = targets[
_documents
[randInst]];
206
_tempDocuments = new int[
_documents
.Length];
214
fixed (int* pDocuments =
_documents
)
229
Array.Copy(_tempDocuments, begin,
_documents
, newEnd, gtCount);
252
_tempDocuments = new int[
_documents
.Length];
260
fixed (int* pDocuments =
_documents
)
277
Array.Copy(_tempDocuments, begin,
_documents
, newEnd, gtCount);
315
fixed (int* pDocuments =
_documents
)
346
yield return
_documents
[index];
353
Array.Copy(
_documents
, _leafBegin[leaf], documents, 0, _leafCount[leaf]);
359
documents =
_documents
;
388
value = array[
_documents
[i]];
399
mean += array[
_documents
[i]];
426
value = array[
_documents
[i]];
429
FloatType weight = (FloatType)sampleWeights[
_documents
[i]];
439
FloatType weight = (FloatType)sampleWeights[
_documents
[i]];
440
mean += array[
_documents
[i]] * weight;