2 writes to _trees
Microsoft.ML.FastTree (2)
TreeEnsemble\InternalTreeEnsemble.cs (2)
36
_trees
= new List<InternalRegressionTree>();
50
_trees
= new List<InternalRegressionTree>();
27 references to _trees
Microsoft.ML.FastTree (27)
TreeEnsemble\InternalTreeEnsemble.cs (27)
28
public IEnumerable<InternalRegressionTree> Trees =>
_trees
;
32
public int NumTrees =>
_trees
.Count;
75
public void AddTree(InternalRegressionTree tree) =>
_trees
.Add(tree);
76
public void AddTreeAt(InternalRegressionTree tree, int index) =>
_trees
.Insert(index, tree);
77
public void RemoveTree(int index) =>
_trees
.RemoveAt(index);
79
public void RemoveAfter(int index) =>
_trees
.RemoveRange(index, NumTrees - index);
80
public InternalRegressionTree GetTreeAt(int index) =>
_trees
[index];
132
_trees
[w].ToTreeEnsembleFormat(sbEvaluator, sbInput, fmap, ref evaluatorCounter, featureToID);
171
sb.AppendFormat("{0}",
_trees
[0].Weight);
180
sb.Append(
_trees
[w].Weight);
236
double[] values = new double[
_trees
.Count];
237
for (int w = 0; w <
_trees
.Count; ++w)
238
values[w] =
_trees
[w].MaxOutput;
246
output +=
_trees
[h].GetOutput(featureBins);
254
output +=
_trees
[h].GetOutput(binnedInstance);
262
output +=
_trees
[h].GetOutput(in feat);
270
if (((InternalQuantileRegressionTree)
_trees
[0]).IsWeightedTargets)
277
((InternalQuantileRegressionTree)
_trees
[h]).LoadSampledLabels(in feat, distribution,
285
return GetOutput(featureBins,
_trees
.Count);
290
if (prefix >
_trees
.Count || prefix < 0)
291
prefix =
_trees
.Count;
313
if (
_trees
.Count == 0)
319
if (prefix >
_trees
.Count || prefix < 0)
320
prefix =
_trees
.Count;
321
FeatureToGainMap gainMap = new FeatureToGainMap(
_trees
.Take(prefix).ToList(), normalize);
356
foreach (var tree in
_trees
)
370
var tree =
_trees
[i];