1 write to TrainSet
Microsoft.ML.FastTree (1)
31 references to TrainSet
Microsoft.ML.FastTree (31)
GamTrainer.cs (28)
152private bool HasWeights => TrainSet?.SampleWeights != null;
241TrainSetScore = new ScoreTracker("train", TrainSet, null);
264Host.Assert(FeatureMap == null || FeatureMap.Length == TrainSet.NumFeatures);
304var sumWeights = HasWeights ? TrainSet.SampleWeights.Sum() : 0;
331TrainSet.FlockToFirstFeature(flockIndex),
333TrainSet.NumDocs,
337TrainSet.SampleWeights,
339}, TrainSet.NumFlocks);
350}, TrainSet.NumFeatures);
358TrainSet.MapFeatureToFlockAndSubFeature(globalFeatureIndex, out flockIndex, out subFeatureIndex);
365TrainSet.Flocks[flockIndex].Trust(subFeatureIndex), 0);
378UpdateScoresForSet(TrainSet, TrainSetScore.Scores, iteration);
445BinEffects = new double[TrainSet.NumFeatures][];
446for (int featureIndex = 0; featureIndex < TrainSet.NumFeatures; featureIndex++)
448TrainSet.MapFeatureToFlockAndSubFeature(featureIndex, out int flockIndex, out int subFeatureIndex);
449int numOfBins = TrainSet.Flocks[flockIndex].BinCount(subFeatureIndex);
494DefineDocumentThreadBlocks(TrainSet.NumDocs, BlockingThreadPool.NumThreads, out int[] trainThreadBlocks);
505var featureIndexer = TrainSet.GetIndexer(featureIndex);
529meanEffects[featureIndex] /= TrainSet.NumDocs;
544BinUpperBounds = new double[TrainSet.NumFeatures][];
548for (int i = 0; i < TrainSet.NumFeatures; i++)
550TrainSet.MapFeatureToFlockAndSubFeature(i, out int flockIndex, out int subFeatureIndex);
551double[] binUpperBound = TrainSet.Flocks[flockIndex].BinUpperBounds(subFeatureIndex);
585_histogram = new SufficientStatsBase[TrainSet.Flocks.Length];
586for (int i = 0; i < TrainSet.Flocks.Length; i++)
587_histogram[i] = TrainSet.Flocks[i].CreateSufficientStats(HasWeights);
595_subGraph = new SubGraph(TrainSet.NumFeatures, GamTrainerOptions.NumberOfIterations);
596_leafSplitCandidates = new LeastSquaresRegressionTreeLearner.LeafSplitCandidates(TrainSet);