3 instantiations of GamRegressionTrainer
Microsoft.ML.FastTree (3)
GamTrainer.cs (1)
694
() => new
GamRegressionTrainer
(host, input),
TreeTrainersCatalog.cs (2)
259
return new
GamRegressionTrainer
(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfIterations, learningRate, maximumBinCountPerFeature);
279
return new
GamRegressionTrainer
(env, options);
28 references to GamRegressionTrainer
Microsoft.ML.FastTree (22)
FastTreeRegression.cs (1)
418
public ObjectiveImpl(Dataset trainData,
GamRegressionTrainer
.Options options) :
GamRegression.cs (11)
13
[assembly: LoadableClass(
GamRegressionTrainer
.Summary,
14
typeof(
GamRegressionTrainer
), typeof(
GamRegressionTrainer
.Options),
16
GamRegressionTrainer
.UserNameValue,
17
GamRegressionTrainer
.LoadNameValue,
18
GamRegressionTrainer
.ShortName, DocName = "trainer/GAM.md")]
50
/// <seealso cref="TreeExtensions.Gam(RegressionCatalog.RegressionTrainers,
GamRegressionTrainer
.Options)"/>
52
public sealed class GamRegressionTrainer : GamTrainerBase<
GamRegressionTrainer
.Options, RegressionPredictionTransformer<GamRegressionModelParameters>, GamRegressionModelParameters>
55
/// Options for the <see cref="
GamRegressionTrainer
"/> as used in
129
/// Trains a <see cref="
GamRegressionTrainer
"/> using both training and validation data, returns
145
/// Model parameters for <see cref="
GamRegressionTrainer
"/>.
GamTrainer.cs (5)
685
[TlcModule.EntryPoint(Name = "Trainers.GeneralizedAdditiveModelRegressor", Desc =
GamRegressionTrainer
.Summary, UserName =
GamRegressionTrainer
.UserNameValue, ShortName =
GamRegressionTrainer
.ShortName)]
686
public static CommonOutputs.RegressionOutput TrainRegression(IHostEnvironment env,
GamRegressionTrainer
.Options input)
693
return TrainerEntryPointsUtils.Train<
GamRegressionTrainer
.Options, CommonOutputs.RegressionOutput>(host, input,
TreeTrainersCatalog.cs (5)
233
/// Create <see cref="
GamRegressionTrainer
"/>, which predicts a target using generalized additive models (GAM).
249
public static
GamRegressionTrainer
Gam(this RegressionCatalog.RegressionTrainers catalog,
263
/// Create <see cref="
GamRegressionTrainer
"/> using advanced options, which predicts a target using generalized additive models (GAM).
274
public static
GamRegressionTrainer
Gam(this RegressionCatalog.RegressionTrainers catalog,
275
GamRegressionTrainer
.Options options)
Microsoft.ML.IntegrationTests (1)
IntrospectiveTraining.cs (1)
145
new
GamRegressionTrainer
.Options { NumberOfIterations = 100, NumberOfThreads = 1 }));
Microsoft.ML.Samples (3)
Dynamic\Trainers\Regression\Gam.cs (1)
30
var
pipeline = mlContext.Regression.Trainers.Gam(
Dynamic\Trainers\Regression\GamWithOptions.cs (2)
31
var options = new
GamRegressionTrainer
.Options
42
var
pipeline =
Microsoft.ML.Tests (2)
TrainerEstimators\TreeEstimators.cs (2)
253
var
trainer = new GamRegressionTrainer(Env, new
GamRegressionTrainer
.Options