|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using Microsoft.ML.Data;
using Microsoft.ML.Internal.Utilities;
using Microsoft.ML.Numeric;
using Microsoft.ML.Runtime;
namespace Microsoft.ML.Trainers.Ensemble
{
internal abstract class BaseMultiAverager : BaseMultiCombiner
{
private protected BaseMultiAverager(IHostEnvironment env, string name, OptionsBase options)
: base(env, name, options)
{
}
protected BaseMultiAverager(IHostEnvironment env, string name, ModelLoadContext ctx)
: base(env, name, ctx)
{
}
protected void CombineCore(ref VBuffer<Single> dst, VBuffer<Single>[] src, Single[] weights = null)
{
Host.AssertNonEmpty(src);
Host.Assert(weights == null || Utils.Size(weights) == Utils.Size(src));
// REVIEW: Should this be tolerant of NaNs?
int len = GetClassCount(src);
if (!TryNormalize(src))
{
GetNaNOutput(ref dst, len);
return;
}
var editor = VBufferEditor.Create(ref dst, len);
if (!editor.CreatedNewValues)
editor.Values.Clear();
// Set the output to values.
dst = editor.Commit();
Single weightTotal;
if (weights == null)
{
weightTotal = src.Length;
for (int i = 0; i < src.Length; i++)
VectorUtils.Add(in src[i], ref dst);
}
else
{
weightTotal = 0;
for (int i = 0; i < src.Length; i++)
{
var w = weights[i];
weightTotal += w;
VectorUtils.AddMult(in src[i], w, ref dst);
}
}
VectorUtils.ScaleBy(ref dst, 1 / weightTotal);
}
}
}
|