1 write to SubModel
Microsoft.ML.Data (1)
Prediction\Calibrator.cs (1)
221
SubModel
= predictor;
68 references to SubModel
Microsoft.ML.Data (25)
Prediction\Calibrator.cs (24)
143
/// <see cref="CalibratedModelParametersBase{TSubPredictor, TCalibrator}.
SubModel
"/> and
171
/// Class for allowing a post-processing step, defined by <see cref="Calibrator"/>, to <see cref="
SubModel
"/>'s
196
/// <see cref="
SubModel
"/>'s output would calibrated by <see cref="Calibrator"/>.
201
/// <see cref="Calibrator"/> is used to post-process score produced by <see cref="
SubModel
"/>.
206
IPredictorProducing<float> IWeaklyTypedCalibratedModelParameters.WeaklyTypedSubModel => (IPredictorProducing<float>)
SubModel
;
209
PredictionKind IPredictor.PredictionKind => ((IPredictorProducing<float>)
SubModel
).PredictionKind;
228
var saver =
SubModel
as ICanSaveInIniFormat;
235
var saver =
SubModel
as ICanSaveInTextFormat;
243
var saver =
SubModel
as ICanSaveInSourceCode;
251
var saver =
SubModel
as ICanSaveSummary;
260
var saver =
SubModel
as ICanGetSummaryInKeyValuePairs;
269
ctx.SaveModel(
SubModel
, ModelFileUtils.DirPredictor);
312
_mapper =
SubModel
as IValueMapper;
506
Host.Check(
SubModel
is IPredictorWithFeatureWeights<float>, "Predictor does not implement " + nameof(IPredictorWithFeatureWeights<float>));
507
_featureWeights = (IPredictorWithFeatureWeights<float>)
SubModel
;
582
Host.Check(
SubModel
is IParameterMixer<float>, "Predictor does not implement " + nameof(IParameterMixer));
583
Host.Check(
SubModel
is IPredictorWithFeatureWeights<float>, "Predictor does not implement " + nameof(IPredictorWithFeatureWeights<float>));
584
_featureWeights =
SubModel
as IPredictorWithFeatureWeights<float>;
624
return (IParameterMixer<float>)model.
SubModel
;
755
_bindable = ScoreUtils.GetSchemaBindableMapper(Host,
SubModel
as IPredictorProducing<float>);
756
_featureContribution =
SubModel
as IFeatureContributionMapper;
762
_bindable = ScoreUtils.GetSchemaBindableMapper(Host,
SubModel
as IPredictorProducing<float>);
763
_featureContribution =
SubModel
as IFeatureContributionMapper;
1040
predictor = p.
SubModel
;
Transforms\ExplainabilityCatalog.cs (1)
71
=> new FeatureContributionCalculatingEstimator(CatalogUtils.GetEnvironment(catalog), predictionTransformer.Model.
SubModel
, numberOfPositiveContributions, numberOfNegativeContributions, predictionTransformer.FeatureColumnName, normalize);
Microsoft.ML.FastTree (4)
GamModelParameters.cs (1)
886
rawPred = calibrated.
SubModel
;
TreeEnsembleFeaturizationEstimator.cs (1)
246
return trained.Model.
SubModel
;
TreeEnsembleFeaturizer.cs (2)
416
predictor = calibrated.
SubModel
;
721
predictor = calibratedModelParametersBase.
SubModel
;
Microsoft.ML.IntegrationTests (9)
IntrospectiveTraining.cs (1)
90
var fastTreeModel = model.LastTransformer.Model.
SubModel
;
Training.cs (8)
236
var firstModelWeights = firstModel.Model.
SubModel
.Weights;
240
var firstModelWeightsPrime = firstModel.Model.
SubModel
.Weights;
243
var secondModel = trainer.Fit(featurizedData, firstModel.Model.
SubModel
);
244
var secondModelWeights = secondModel.Model.
SubModel
.Weights;
422
var firstModelWeights = firstModel.Model.
SubModel
.Weights;
426
var firstModelWeightsPrime = firstModel.Model.
SubModel
.Weights;
429
var secondModel = trainer.Fit(featurizedData, firstModel.Model.
SubModel
);
430
var secondModelWeights = secondModel.Model.
SubModel
.Weights;
Microsoft.ML.Predictor.Tests (1)
TestIniModels.cs (1)
579
var predictor = calibratedPredictor.
SubModel
as ICanSaveInIniFormat;
Microsoft.ML.Samples (10)
Dynamic\Trainers\BinaryClassification\Gam.cs (1)
48
var gam = model.Model.
SubModel
;
Dynamic\Trainers\BinaryClassification\GamWithOptions.cs (1)
56
var gam = model.Model.
SubModel
;
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportance.cs (1)
63
linearPredictor.Model.
SubModel
.Weights[i],
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportanceLoadFromDisk.cs (1)
62
linearPredictor.Model.
SubModel
.Weights[i], // this way we can access the weights inside the submodel
Dynamic\Trainers\Regression\GamAdvanced.cs (1)
48
var gam = model.Model.
SubModel
;
Dynamic\Trainers\Regression\GamWithOptionsAdvanced.cs (1)
56
var gam = model.Model.
SubModel
;
Dynamic\Transforms\CalculateFeatureContributionCalibrated.cs (3)
44
linearModel.Model.
SubModel
.Bias,
45
linearModel.Model.
SubModel
.Weights[0],
46
linearModel.Model.
SubModel
.Weights[1]);
Dynamic\Transforms\TreeFeaturization\PretrainedTreeEnsembleFeaturizationWithOptions.cs (1)
57
ModelParameters = model.Model.
SubModel
, // Pretrained tree model.
Microsoft.ML.Tests (19)
TrainerEstimators\LbfgsTests.cs (5)
28
trainer.Fit(transformedDataView, model.Model.
SubModel
);
65
var linearModel = transformerChain.LastTransformer.Model.
SubModel
as LinearBinaryModelParameters;
92
var linearModel = transformer.LastTransformer.Model.
SubModel
as LinearBinaryModelParameters;
131
linearModel = model.
SubModel
as LinearBinaryModelParameters;
149
var subPredictor = result?.
SubModel
as LinearBinaryModelParameters;
TrainerEstimators\SymSgdClassificationTests.cs (2)
26
trainer.Fit(transformedDataView, model.Model.
SubModel
);
40
modelParameters: initPredictor.Model.
SubModel
);
TrainerEstimators\TrainerEstimators.cs (1)
104
trainer.Fit(transformedDataView, model.Model.
SubModel
);
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (7)
149
var treeFeaturizer = new TreeEnsembleFeaturizationTransformer(ML, dataView.Schema, dataView.Schema["Features"], model.Model.
SubModel
,
166
var leafId = model.Model.
SubModel
.GetLeaf(treeIndex, new VBuffer<float>(10, features[dataPointIndex]), ref path);
167
var leafValue = model.Model.
SubModel
.GetLeafValue(0, leafId);
260
ModelParameters = model.Model.
SubModel
,
281
var leafId = model.Model.
SubModel
.GetLeaf(treeIndex, new VBuffer<float>(10, features[dataPointIndex]), ref path);
282
var leafValue = model.Model.
SubModel
.GetLeafValue(0, leafId);
328
ModelParameters = treeModel.Model.
SubModel
TrainerEstimators\TreeEstimators.cs (4)
993
var trainedTreeEnsemble = transformer.LastTransformer.Model.
SubModel
.TrainedTreeEnsemble;
995
var modelParameters = transformer.LastTransformer.Model.
SubModel
as ICanGetSummaryAsIDataView;
1059
var trainedTreeEnsemble = transformer.LastTransformer.Model.
SubModel
.TrainedTreeEnsemble;
1061
var modelParameters = transformer.LastTransformer.Model.
SubModel
as ICanGetSummaryAsIDataView;