1 write to Environment
Microsoft.ML.Data (1)
TrainCatalog.cs (1)
139Environment = env;
49 references to Environment
Microsoft.ML.Data (49)
TrainCatalog.cs (49)
21IHostEnvironment IInternalCatalog.Environment => Environment; 92Environment.CheckValue(data, nameof(data)); 93Environment.CheckValue(estimator, nameof(estimator)); 94Environment.CheckParam(numFolds > 1, nameof(numFolds), "Must be more than 1"); 95Environment.CheckValueOrNull(samplingKeyColumn); 97var splitColumn = DataOperationsCatalog.CreateSplitColumn(Environment, ref data, samplingKeyColumn, seed, fallbackInEnvSeed: true); 103foreach (var split in DataOperationsCatalog.CrossValidationSplit(Environment, data, splitColumn, numFolds)) 205Environment.CheckValue(data, nameof(data)); 206Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 207Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 208Environment.CheckNonEmpty(probabilityColumnName, nameof(probabilityColumnName)); 209Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName)); 211var eval = new BinaryClassifierEvaluator(Environment, new BinaryClassifierEvaluator.Arguments() { }); 226Environment.CheckValue(data, nameof(data)); 227Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 228Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName)); 230var eval = new BinaryClassifierEvaluator(Environment, new BinaryClassifierEvaluator.Arguments() { }); 253Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 278Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 296return new BinaryPredictionTransformer<TModel>(Environment, model.Model, model.TrainSchema, model.FeatureColumnName, threshold, model.ThresholdColumn); 446Environment.CheckValue(data, nameof(data)); 447Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 450Environment.CheckNonEmpty(featureColumnName, nameof(featureColumnName), "The features column name should be non-empty if you want to calculate the Dbi metric."); 453Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName), "The label column name should be non-empty if you want to calculate the Nmi metric."); 455var eval = new ClusteringEvaluator(Environment, new ClusteringEvaluator.Arguments() { CalculateDbi = !string.IsNullOrEmpty(featureColumnName) }); 525Environment.CheckValue(data, nameof(data)); 526Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 527Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 528Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName)); 529Environment.CheckUserArg(topKPredictionCount >= 0, nameof(topKPredictionCount), "Must be non-negative"); 534var eval = new MulticlassClassificationEvaluator(Environment, args); 557Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 601Environment.CheckValue(data, nameof(data)); 602Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 603Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 605var eval = new RegressionEvaluator(Environment, new RegressionEvaluator.Arguments() { }); 627Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 690Environment.CheckValue(data, nameof(data)); 691Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 692Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 693Environment.CheckNonEmpty(rowGroupColumnName, nameof(rowGroupColumnName)); 695var eval = new RankingEvaluator(Environment, options ?? new RankingEvaluatorOptions() { }); 718Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 765Environment.CheckValue(data, nameof(data)); 766Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName)); 767Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName)); 768Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName)); 773var eval = new AnomalyDetectionEvaluator(Environment, args); 790return new AnomalyPredictionTransformer<TModel>(Environment, model.Model, model.TrainSchema, model.FeatureColumnName, threshold, model.ThresholdColumn);