1 write to Environment
Microsoft.ML.Data (1)
49 references to Environment
Microsoft.ML.Data (49)
TrainCatalog.cs (49)
21IHostEnvironment IInternalCatalog.Environment => Environment;
92Environment.CheckValue(data, nameof(data));
93Environment.CheckValue(estimator, nameof(estimator));
94Environment.CheckParam(numFolds > 1, nameof(numFolds), "Must be more than 1");
95Environment.CheckValueOrNull(samplingKeyColumn);
97var splitColumn = DataOperationsCatalog.CreateSplitColumn(Environment, ref data, samplingKeyColumn, seed, fallbackInEnvSeed: true);
103foreach (var split in DataOperationsCatalog.CrossValidationSplit(Environment, data, splitColumn, numFolds))
205Environment.CheckValue(data, nameof(data));
206Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
207Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
208Environment.CheckNonEmpty(probabilityColumnName, nameof(probabilityColumnName));
209Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName));
211var eval = new BinaryClassifierEvaluator(Environment, new BinaryClassifierEvaluator.Arguments() { });
226Environment.CheckValue(data, nameof(data));
227Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
228Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName));
230var eval = new BinaryClassifierEvaluator(Environment, new BinaryClassifierEvaluator.Arguments() { });
253Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
278Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
296return new BinaryPredictionTransformer<TModel>(Environment, model.Model, model.TrainSchema, model.FeatureColumnName, threshold, model.ThresholdColumn);
446Environment.CheckValue(data, nameof(data));
447Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
450Environment.CheckNonEmpty(featureColumnName, nameof(featureColumnName), "The features column name should be non-empty if you want to calculate the Dbi metric.");
453Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName), "The label column name should be non-empty if you want to calculate the Nmi metric.");
455var eval = new ClusteringEvaluator(Environment, new ClusteringEvaluator.Arguments() { CalculateDbi = !string.IsNullOrEmpty(featureColumnName) });
525Environment.CheckValue(data, nameof(data));
526Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
527Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
528Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName));
529Environment.CheckUserArg(topKPredictionCount >= 0, nameof(topKPredictionCount), "Must be non-negative");
534var eval = new MulticlassClassificationEvaluator(Environment, args);
557Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
601Environment.CheckValue(data, nameof(data));
602Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
603Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
605var eval = new RegressionEvaluator(Environment, new RegressionEvaluator.Arguments() { });
627Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
690Environment.CheckValue(data, nameof(data));
691Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
692Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
693Environment.CheckNonEmpty(rowGroupColumnName, nameof(rowGroupColumnName));
695var eval = new RankingEvaluator(Environment, options ?? new RankingEvaluatorOptions() { });
718Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
765Environment.CheckValue(data, nameof(data));
766Environment.CheckNonEmpty(labelColumnName, nameof(labelColumnName));
767Environment.CheckNonEmpty(scoreColumnName, nameof(scoreColumnName));
768Environment.CheckNonEmpty(predictedLabelColumnName, nameof(predictedLabelColumnName));
773var eval = new AnomalyDetectionEvaluator(Environment, args);
790return new AnomalyPredictionTransformer<TModel>(Environment, model.Model, model.TrainSchema, model.FeatureColumnName, threshold, model.ThresholdColumn);