1 write to InputColumnName
Microsoft.ML.Data (1)
Transforms\ExtensionsCatalog.cs (1)
39
InputColumnName
= inputColumnName ?? outputColumnName;
29 references to InputColumnName
Microsoft.ML.Data (7)
Transforms\ConversionsExtensionsCatalog.cs (4)
106
var columnOptions = columns.Select(x => new TypeConvertingEstimator.ColumnOptions(x.OutputColumnName, outputKind, x.
InputColumnName
)).ToArray();
163
return new KeyToValueMappingEstimator(env, columns.Select(x => (x.OutputColumnName, x.
InputColumnName
)).ToArray());
217
var columnOptions = columns.Select(x => new KeyToVectorMappingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, outputCountVector)).ToArray();
291
var columnOptions = columns.Select(x => new ValueToKeyMappingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, maximumNumberOfKeys, keyOrdinality, addKeyValueAnnotationsAsText)).ToArray();
Transforms\ExtensionsCatalog.cs (3)
27
/// Name of the column resulting from the transformation of <see cref="
InputColumnName
"/>.
45
infos.Select(info => (info.OutputColumnName, info.
InputColumnName
)).ToArray();
78
/// Create a <see cref="ColumnCopyingEstimator"/>, which copies the data from the column specified in <see cref="InputOutputColumnPair.
InputColumnName
" />
Microsoft.ML.ImageAnalytics (2)
ExtensionsCatalog.cs (2)
17
/// Create a <see cref="ImageGrayscalingEstimator"/>, which converts images in the column specified in <see cref="InputOutputColumnPair.
InputColumnName
"/>
36
/// Create a <see cref="ImageGrayscalingEstimator"/>, which converts images in the column specified in <see cref="InputOutputColumnPair.
InputColumnName
"/>
Microsoft.ML.Tests (1)
Transformers\NormalizerTests.cs (1)
647
Assert.Equal("input", t.GetColumnPairs()[0].
InputColumnName
);
Microsoft.ML.Transforms (19)
CategoricalCatalog.cs (2)
86
var columnOptions = columns.Select(x => new OneHotEncodingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, outputKind, maximumNumberOfKeys, keyOrdinality)).ToArray();
186
var columnOptions = columns.Select(x => new OneHotHashEncodingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, outputKind, numberOfBits, seed, useOrderedHashing, maximumNumberOfInverts)).ToArray();
Dracula\CountTableTransformer.cs (1)
110
cols[i] = new SharedColumnOptions(columns[i].OutputColumnName, columns[i].
InputColumnName
,
Dracula\CountTargetEncodingTransformer.cs (3)
406
return columns.All(c => HashingTransformer.Columns.Select(hc => hc.InputColumnName).Contains(c.
InputColumnName
))
453
columns[i].OutputColumnName, columns[i].
InputColumnName
, priorCoefficient, laplaceScale);
463
columns[i].OutputColumnName, columns[i].
InputColumnName
, builder, priorCoefficient, laplaceScale);
ExtensionsCatalog.cs (4)
40
/// Create a <see cref="MissingValueIndicatorEstimator"/>, which copies the data from the column specified in <see cref="InputOutputColumnPair.
InputColumnName
" />
56
return new MissingValueIndicatorEstimator(env, columns.Select(x => (x.OutputColumnName, x.
InputColumnName
)).ToArray());
86
/// Create a <see cref="ColumnCopyingEstimator"/>, which copies the data from the column specified in <see cref="InputOutputColumnPair.
InputColumnName
" />
109
var columnOptions = columns.Select(x => new MissingValueReplacingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, replacementMode, imputeBySlot)).ToArray();
FeatureSelectionCatalog.cs (2)
68
columns.Select(x => (x.OutputColumnName, x.
InputColumnName
)).ToArray());
124
var columnOptions = columns.Select(x => new CountFeatureSelectingEstimator.ColumnOptions(x.OutputColumnName, x.
InputColumnName
, count)).ToArray();
NormalizerCatalog.cs (7)
81
new NormalizingEstimator.MinMaxColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, fixZero)).ToArray());
127
new NormalizingEstimator.MeanVarianceColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, fixZero, useCdf)).ToArray());
169
new NormalizingEstimator.LogMeanVarianceColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, useCdf, false)).ToArray());
216
new NormalizingEstimator.LogMeanVarianceColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, useCdf, fixZero)).ToArray());
269
new NormalizingEstimator.BinningColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, fixZero, maximumBinCount)).ToArray());
324
column.OutputColumnName, column.
InputColumnName
, labelColumnName, maximumExampleCount, fixZero, maximumBinCount, mininimumExamplesPerBin)).ToArray());
383
new NormalizingEstimator.RobustScalingColumnOptions(column.OutputColumnName, column.
InputColumnName
, maximumExampleCount, centerData, quantileMin, quantileMax)).ToArray());