1 write to Label
Microsoft.ML.Data (1)
Training\TrainerUtils.cs (1)
921
_get(ref
Label
);
36 references to Label
Microsoft.ML.Data (4)
Training\TrainerUtils.cs (4)
162
int cls = (int)cursor.
Label
;
163
if (cls != cursor.
Label
|| cls < 0)
166
"Training label column '{0}' contains invalid values for multi-class: {1}.", col.Name, cursor.
Label
);
922
if (!_keepBad && !FloatUtils.IsFinite(
Label
))
Microsoft.ML.Ensemble (1)
OutputCombiners\BaseStacking.cs (1)
197
labels[count] = labelConvert(cursor.
Label
);
Microsoft.ML.FastTree (6)
FastTree.cs (5)
1870
if (cursor.
Label
< 0 || cursor.
Label
> MaxLabel)
1871
throw ch.Except("Found invalid label {0}. Value should be between 0 and {1}, inclusive.", cursor.
Label
, MaxLabel);
1877
_actualTargets.Add(cursor.
Label
);
1880
_targetsList.Add((short)cursor.
Label
);
GamModelParameters.cs (1)
661
labels.Add(cursor.
Label
);
Microsoft.ML.LightGbm (1)
LightGbmTrainerBase.cs (1)
787
labelList.Add(cursor.
Label
);
Microsoft.ML.Mkl.Components (5)
OlsLinearRegression.cs (4)
233
labelsArray[rowOffset] = cursor.
Label
;
312
var yi = cursor.
Label
;
466
var e = cursor.
Label
- yh;
468
var ydm = cursor.
Label
- yMean;
SymSgdClassificationTrainer.cs (1)
623
float label = _cursor.
Label
;
Microsoft.ML.OneDal (1)
OneDalUtils.cs (1)
52
labelsList.Add(cursor.
Label
);
Microsoft.ML.StandardTrainers (18)
LdSvm\LdSvmTrainer.cs (1)
518
example.Label = cursor.
Label
> 0 ? 1 : -1;
Standard\LogisticRegression\LbfgsPredictorBase.cs (6)
392
AccumulateOneGradient(in cursor.Features, cursor.
Label
, cursor.Weight, in x, ref grad, ref scratch);
505
labelsList.Add((int)cursor.
Label
);
614
ProcessPriorDistribution(cursor.
Label
, cursor.Weight);
616
PreTrainingProcessInstance(cursor.
Label
, in cursor.Features, cursor.Weight);
630
_labels[index] = cursor.
Label
;
876
loss += AccumulateOneGradient(in cursor.Features, cursor.
Label
, cursor.Weight,
Standard\LogisticRegression\LogisticRegression.cs (1)
347
var label = cursor.
Label
;
Standard\Online\OnlineLinear.cs (1)
336
state.ProcessDataInstance(ch, in cursor.Features, cursor.
Label
, cursor.Weight);
Standard\SdcaBinary.cs (7)
817
var label = cursor.
Label
;
982
Double subLoss = Loss.Loss(output, cursor.
Label
);
984
Double subDualLoss = Loss.DualLoss(cursor.
Label
, duals[idx]);
1541
return cursor.
Label
> 0 ? cursor.Weight * _positiveInstanceWeight : cursor.Weight;
2085
Double subLoss = lossFunc.Loss(WScaledDot(in features, weightScaling, in weights, bias), cursor.
Label
);
2087
if (cursor.
Label
> 0)
2124
float label = cursor.
Label
;
Standard\SdcaMulticlass.cs (2)
207
var label = (int)cursor.
Label
;
382
var label = (int)cursor.
Label
;