1 write to TrainingSet
Microsoft.ML.Core (1)
Prediction\TrainContext.cs (1)
62TrainingSet = trainingSet;
32 references to TrainingSet
Microsoft.ML.Core (1)
Prediction\TrainContext.cs (1)
49/// <param name="trainingSet">Will set <see cref="TrainingSet"/> to this value. This must be specified</param>
Microsoft.ML.Data (2)
Training\TrainerUtils.cs (2)
427var tschema = context.TrainingSet.Schema; 442var data = context.TrainingSet.Data;
Microsoft.ML.Ensemble (1)
Trainer\EnsembleTrainerBase.cs (1)
114return TrainCore(ch, context.TrainingSet);
Microsoft.ML.FastTree (8)
FastTreeClassification.cs (1)
187var trainData = context.TrainingSet;
FastTreeRanking.cs (1)
141var trainData = context.TrainingSet;
FastTreeRegression.cs (1)
111var trainData = context.TrainingSet;
FastTreeTweedie.cs (1)
120var trainData = context.TrainingSet;
GamTrainer.cs (2)
227ConvertData(context.TrainingSet, context.ValidationSet); 233InputLength = context.TrainingSet.Schema.Feature.Value.Type.GetValueCount();
RandomForestClassification.cs (1)
214var trainData = context.TrainingSet;
RandomForestRegression.cs (1)
353var trainData = context.TrainingSet;
Microsoft.ML.KMeansClustering (1)
KMeansPlusPlusTrainer.cs (1)
200var data = context.TrainingSet;
Microsoft.ML.LightGbm (1)
LightGbmTrainerBase.cs (1)
466dtrain = LoadTrainingData(ch, context.TrainingSet, out catMetaData);
Microsoft.ML.Mkl.Components (2)
OlsLinearRegression.cs (1)
156var examples = context.TrainingSet;
SymSgdClassificationTrainer.cs (1)
230var preparedData = PrepareDataFromTrainingExamples(ch, context.TrainingSet, out int weightSetCount);
Microsoft.ML.PCA (2)
PcaTrainer.cs (2)
190context.TrainingSet.CheckFeatureFloatVector(out int dimension); 194return TrainCore(ch, context.TrainingSet, dimension);
Microsoft.ML.Recommender (1)
MatrixFactorizationTrainer.cs (1)
428return TrainCore(ch, context.TrainingSet, context.ValidationSet);
Microsoft.ML.StandardTrainers (11)
FactorizationMachine\FactorizationMachineTrainer.cs (1)
563return TrainCore(ch, pch, context.TrainingSet, context.ValidationSet, initPredictor);
LdSvm\LdSvmTrainer.cs (3)
194trainContext.TrainingSet.CheckFeatureFloatVector(out var numFeatures); 195trainContext.TrainingSet.CheckBinaryLabel(); 198return TrainCore(ch, trainContext.TrainingSet, numLeaf, numFeatures);
Standard\LogisticRegression\LbfgsPredictorBase.cs (1)
438var data = context.TrainingSet;
Standard\MulticlassClassification\MetaMulticlassTrainer.cs (1)
120var data = context.TrainingSet;
Standard\MulticlassClassification\MulticlassNaiveBayesTrainer.cs (1)
135var data = context.TrainingSet;
Standard\Online\OnlineLinear.cs (1)
288var data = context.TrainingSet;
Standard\SdcaBinary.cs (1)
74var preparedData = PrepareDataFromTrainingExamples(ch, context.TrainingSet, out int weightSetCount);
Standard\Simple\SimpleTrainers.cs (1)
253var data = context.TrainingSet;
Standard\StochasticTrainerBase.cs (1)
35var preparedData = PrepareDataFromTrainingExamples(ch, context.TrainingSet, out int weightSetCount);
Microsoft.ML.Vision (2)
ImageClassificationTrainer.cs (2)
664InitializeTrainingGraph(trainContext.TrainingSet.Data); 696CacheFeaturizedImagesToDisk(trainContext.TrainingSet.Data, _options.LabelColumnName,