1 write to Schema
Microsoft.ML.Core (1)
Data\RoleMappedSchema.cs (1)
428
Schema
= schema;
274 references to Schema
Microsoft.ML.Core (2)
Data\RoleMappedSchema.cs (2)
405
/// Note that the schema of <see cref="RoleMappedSchema.Schema"/> of <see cref="
Schema
"/> is
417
/// The role mapped schema. Note that <see cref="
Schema
"/>'s <see cref="RoleMappedSchema.Schema"/> is
Microsoft.ML.Data (81)
Commands\CrossValidationCommand.cs (8)
259
return new RoleMappedData(pipe, srcData.
Schema
.GetColumnRoleNames());
531
var mapper = bindable.Bind(host, testData.
Schema
);
533
IDataScorerTransform scorePipe = scorerComp.CreateComponent(host, testData.Data, mapper, trainData.
Schema
);
544
trainData.
Schema
.GetColumnRoleNames());
555
var dataEval = new RoleMappedData(scorePipe, testData.
Schema
.GetColumnRoleNames(), opt: true);
562
perInstance = new RoleMappedData(perInst, dataEval.
Schema
.GetColumnRoleNames(), opt: true);
564
return new FoldResult(dict, dataEval.
Schema
.Schema, perInstance, trainData.
Schema
);
Commands\ScoreCommand.cs (1)
243
var sc = GetScorerComponentAndMapper(predictor, null, data.
Schema
, env, null, out var mapper);
Commands\TrainCommand.cs (5)
178
validData = new RoleMappedData(validPipe, data.
Schema
.GetColumnRoleNames());
196
testDataUsedInTrainer = new RoleMappedData(testPipeUsedInTrainer, data.
Schema
.GetColumnRoleNames());
377
ModelFileUtils.SaveRoleMappings(env, ch, data.
Schema
, rep);
503
var prefetch = data.
Schema
.GetColumnRoles().Select(kc => kc.Value.Index).ToArray();
506
data = new RoleMappedData(cacheView, data.
Schema
.GetColumnRoleNames());
Commands\TrainTestCommand.cs (3)
164
validData = new RoleMappedData(validPipe, data.
Schema
.GetColumnRoleNames());
182
testDataUsedInTrainer = new RoleMappedData(testPipeUsedInTrainer, data.
Schema
.GetColumnRoleNames());
205
IDataScorerTransform scorePipe = ScoreUtils.GetScorer(ImplOptions.Scorer, predictor, testPipe, features, group, customCols, Host, data.
Schema
);
EntryPoints\InputBase.cs (1)
116
cachedRoleMappedData = new RoleMappedData(outputData, roleMappedData.
Schema
.GetColumnRoleNames());
EntryPoints\PredictorModelImpl.cs (1)
37
_roleMappings = trainingData.
Schema
.GetColumnRoleNames().ToArray();
EntryPoints\SummarizePredictor.cs (1)
44
output.Summary = GetSummaryAndStats(host, predictor, rmd.
Schema
, out output.Stats);
Evaluators\EvaluatorBase.cs (6)
33
CheckColumnTypes(data.
Schema
);
34
Func<int, bool> activeCols = GetActiveCols(data.
Schema
);
35
var agg = GetAggregator(data.
Schema
);
36
AggregatorDictionaryBase[] dictionaries = GetAggregatorDictionaries(data.
Schema
);
38
var dict = ProcessData(data.Data, data.
Schema
, activeCols, agg, dictionaries);
459
var mapper = CreatePerInstanceRowMapper(data.
Schema
);
Evaluators\EvaluatorUtils.cs (1)
774
var combined = AppendPerInstanceDataViews(env, perInstance[0].
Schema
.Label?.Name, foldDataViews, out variableSizeVectorColumnNames);
Evaluators\MamlEvaluator.cs (9)
19
/// evaluation should be searched for by name in the <see cref="RoleMappedData.
Schema
"/>.
109
data = new RoleMappedData(data.Data, GetInputColumnRoles(data.
Schema
, needStrat: true));
222
var schema = scoredData.
Schema
;
238
if (perInst.
Schema
.Schema.TryGetColumnIndex(MetricKinds.ColumnNames.FoldIndex, out foldCol))
242
if (perInst.
Schema
.Name?.Name is string nameName)
257
if (perInst.
Schema
.Weight?.Name is string weightName)
261
foreach (var col in GetPerInstanceColumnsToSave(perInst.
Schema
))
266
return GetPerInstanceMetricsCore(idv, perInst.
Schema
);
284
var data = new RoleMappedData(perInstance.Data, GetInputColumnRoles(perInstance.
Schema
, needName: true));
Evaluators\RankingEvaluator.cs (5)
137
Host.CheckParam(data.
Schema
.Label.HasValue, nameof(data), "Schema must contain a label column");
138
var scoreInfo = data.
Schema
.GetUniqueColumn(AnnotationUtils.Const.ScoreValueKind.Score);
139
Host.CheckParam(data.
Schema
.Group.HasValue, nameof(data), "Schema must contain a group column");
142
data.
Schema
.Label.Value.Name, scoreInfo.Name, data.
Schema
.Group.Value.Name, _truncationLevel, _labelGains);
Prediction\Calibrator.cs (5)
916
if (!NeedCalibration(env, ch, calibrator, trainer, predictor, data.
Schema
))
1020
ch.CheckParam(data.
Schema
.Label.HasValue, nameof(data), "data must have a Label column");
1024
return TrainCalibrator(env, ch, caliTrainer, scored, data.
Schema
.Label.Value.Name, DefaultColumnNames.Score, data.
Schema
.Weight?.Name, maxRows);
2222
if (data.
Schema
.Label == null && scp != null)
Training\TrainerUtils.cs (33)
53
if (!data.
Schema
.Feature.HasValue)
55
var col = data.
Schema
.Feature.Value;
70
Contracts.Assert(data.
Schema
.Feature.HasValue);
71
var col = data.
Schema
.Feature.Value;
86
if (!data.
Schema
.Label.HasValue)
88
var col = data.
Schema
.Label.Value;
121
if (!data.
Schema
.Label.HasValue)
123
var col = data.
Schema
.Label.Value;
124
Contracts.Assert(!data.
Schema
.Schema[col.Index].IsHidden);
141
if (!data.
Schema
.Label.HasValue)
143
var col = data.
Schema
.Label.Value;
189
if (!data.
Schema
.Label.HasValue)
191
var col = data.
Schema
.Label.Value;
203
if (!data.
Schema
.Weight.HasValue)
205
var col = data.
Schema
.Weight.Value;
215
if (!data.
Schema
.Group.HasValue)
217
var col = data.
Schema
.Group.Value;
233
if ((opt & CursOpt.Label) != 0 && data.
Schema
.Label.HasValue)
234
columns.Add(data.
Schema
.Label.Value);
235
if ((opt & CursOpt.Features) != 0 && data.
Schema
.Feature.HasValue)
236
columns.Add(data.
Schema
.Feature.Value);
237
if ((opt & CursOpt.Weight) != 0 && data.
Schema
.Weight.HasValue)
238
columns.Add(data.
Schema
.Weight.Value);
239
if ((opt & CursOpt.Group) != 0 && data.
Schema
.Group.HasValue)
240
columns.Add(data.
Schema
.Group.Value);
278
return GetFeatureFloatVectorGetter(row, data.
Schema
);
302
return GetLabelFloatGetter(row, data.
Schema
);
323
return GetOptWeightFloatGetter(row, data.
Schema
);
344
return GetOptGroupGetter(row, data.
Schema
);
427
var tschema = context.TrainingSet.
Schema
;
834
if ((opt & CursOpt.Features) != 0 && data.
Schema
.Feature != null)
901
if ((opt & CursOpt.Label) != 0 && data.
Schema
.Label != null)
973
if ((opt & CursOpt.Label) != 0 && data.
Schema
.Label != null)
Transforms\TrainAndScoreTransformer.cs (1)
245
return ScoreUtils.GetScorer(args.Scorer, predictor, input, feat, group, customCols, env, data.
Schema
, mapperFactory);
Utilities\ComponentCreation.cs (1)
172
var mapper = bindable.Bind(env, data.
Schema
);
Microsoft.ML.Ensemble (24)
EnsembleUtils.cs (3)
22
Contracts.Assert(data.
Schema
.Feature.HasValue);
24
var featCol = data.
Schema
.Feature.Value;
39
var res = new RoleMappedData(view, data.
Schema
.GetColumnRoleNames());
EntryPoints\PipelineEnsemble.cs (1)
54
summaries[i] = SummarizePredictor.GetSummaryAndStats(host, pred, rmd.
Schema
, out stats[i]);
OutputCombiners\BaseStacking.cs (3)
155
switch (data.
Schema
.Label.Value.Type.GetRawKind())
162
ch.Check(data.
Schema
.Label.Value.Type is KeyDataViewType);
208
bldr.AddColumn(DefaultColumnNames.Label, data.
Schema
.Label.Value.Type as PrimitiveDataViewType, labels);
PipelineEnsemble.cs (10)
72
Mappers[i] = bindable.Bind(Parent.Host, rmd.
Schema
) as ISchemaBoundRowMapper;
584
summaryModel.SaveSummary(writer, rmd.
Schema
);
597
if (!rmd.
Schema
.Label.HasValue)
599
var labelCol = rmd.
Schema
.Label.Value;
607
var schema = rmd.
Schema
.Schema;
660
var labelInfo = rmd.
Schema
.Label.HasValue;
661
if (!rmd.
Schema
.Label.HasValue)
663
var labelCol = rmd.
Schema
.Label.Value;
727
summaryModel.SaveSummary(sw, rmd.
Schema
);
732
var listCur = summaryKvps.GetSummaryInKeyValuePairs(rmd.
Schema
);
Selector\FeatureSelector\RandomFeatureSelector.cs (1)
52
var type = data.
Schema
.Feature.Value.Type;
Selector\SubModelSelector\BaseSubModelSelector.cs (2)
83
IDataScorerTransform scorePipe = ScoreUtils.GetScorer(model.Predictor, testData, Host, testData.
Schema
);
85
GetColumnRoles(testData.
Schema
, scorePipe.Schema));
Selector\SubsetSelector\BaseSubsetSelector.cs (2)
80
dataTest = new RoleMappedData(viewTest, Data.
Schema
.GetColumnRoleNames());
81
dataTrain = new RoleMappedData(viewTrain, Data.
Schema
.GetColumnRoleNames());
Selector\SubsetSelector\BootstrapSelector.cs (1)
52
var dataTrain = new RoleMappedData(viewTrain, Data.
Schema
.GetColumnRoleNames());
Selector\SubsetSelector\RandomPartitionSelector.cs (1)
50
var dataTrain = new RoleMappedData(viewTrain, Data.
Schema
.GetColumnRoleNames());
Microsoft.ML.EntryPoints (13)
PermutationFeatureImportance.cs (11)
65
Contracts.Check(roleMappedData.
Schema
.Feature != null, "Feature column not found.");
66
Contracts.Check(roleMappedData.
Schema
.Label != null, "Label column not found.");
90
var roles = roleMappedData.
Schema
.GetColumnRoleNames();
104
var slotNames = GetSlotNames(roleMappedData.
Schema
);
147
var roles = roleMappedData.
Schema
.GetColumnRoleNames();
161
var slotNames = GetSlotNames(roleMappedData.
Schema
);
206
var roles = roleMappedData.
Schema
.GetColumnRoleNames();
220
var slotNames = GetSlotNames(roleMappedData.
Schema
);
257
Contracts.Check(roleMappedData.
Schema
.Group != null, "Group ID column not found.");
258
var roles = roleMappedData.
Schema
.GetColumnRoleNames();
274
var slotNames = GetSlotNames(roleMappedData.
Schema
);
ScoreModel.cs (2)
85
var mapper = bindable.Bind(host, data.
Schema
);
135
var mapper = bindable.Bind(host, data.
Schema
);
Microsoft.ML.FastTree (43)
FastTree.cs (19)
190
AnnotationUtils.TryGetCategoricalFeatureIndices(trainData.
Schema
.Schema, trainData.
Schema
.Feature.Value.Index, out CategoricalFeatures);
205
Host.Assert(data.
Schema
.Feature.HasValue);
211
return itdv?.GetSlotType(data.
Schema
.Feature.Value.Index) != null;
1329
Host.Assert(examples.
Schema
.Feature.HasValue);
1345
var labelName = examples.
Schema
.Label?.Name;
1354
if (examples.
Schema
.Group?.Name is string groupName)
1359
examples = new RoleMappedData(data, examples.
Schema
.GetColumnRoleNames());
1364
int featIdx = AddColumnIfNeeded(examples.
Schema
.Feature, toTranspose);
1365
int labelIdx = AddColumnIfNeeded(examples.
Schema
.Label, toTranspose);
1366
int groupIdx = AddColumnIfNeeded(examples.
Schema
.Group, toTranspose);
1367
int weightIdx = AddColumnIfNeeded(examples.
Schema
.Weight, toTranspose);
1377
FeaturesToContentMap fmap = new FeaturesToContentMap(examples.
Schema
);
1618
ch.Warning("This is not ranking problem, Group Id '{0}' column will be ignored", examples.
Schema
.Group.Value.Name);
1771
_weights = data.
Schema
.Weight != null ? new List<double>() : null;
1824
hasGroup = _data.
Schema
.Group != null;
1831
if (_data.
Schema
.Group != null)
1832
ch.Warning("This is not ranking problem, Group Id '{0}' column will be ignored", _data.
Schema
.Group.Value.Name);
1835
if (_data.
Schema
.Weight.HasValue)
FastTreeClassification.cs (1)
197
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
FastTreeRanking.cs (1)
150
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
FastTreeRegression.cs (1)
120
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
FastTreeTweedie.cs (1)
130
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
GamModelParameters.cs (3)
633
var schema = _data.
Schema
;
687
var featureCol = _data.
Schema
.Schema[DefaultColumnNames.Features];
688
AnnotationUtils.TryGetCategoricalFeatureIndices(_data.
Schema
.Schema, featureCol.Index, out _catsMap);
GamTrainer.cs (3)
233
InputLength = context.TrainingSet.
Schema
.Feature.Value.Type.GetValueCount();
270
Host.Assert(data.
Schema
.Feature.HasValue);
274
return (data.Data as ITransposeDataView)?.GetSlotType(data.
Schema
.Feature.Value.Index) != null;
RandomForestClassification.cs (2)
224
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
227
if (!trainData.
Schema
.Weight.HasValue && MLContext.OneDalDispatchingEnabled)
RandomForestRegression.cs (2)
363
FeatureCount = trainData.
Schema
.Feature.Value.Type.GetValueCount();
366
if (!trainData.
Schema
.Weight.HasValue && MLContext.OneDalDispatchingEnabled)
TreeEnsembleFeaturizer.cs (10)
646
Contracts.Assert(data.
Schema
.Feature.HasValue);
655
if (vm.InputType.GetVectorSize() != data.
Schema
.Feature.Value.Type.GetVectorSize())
659
vm.InputType.GetVectorSize(), data.
Schema
.Feature.Value.Type.GetVectorSize());
663
var bound = bindable.Bind(env, data.
Schema
);
664
xf = new GenericScorer(env, scorerArgs, input, bound, data.
Schema
);
716
ch.Assert(data.
Schema
.Feature.HasValue);
726
if (data != null && vm.InputType.GetVectorSize() != data.
Schema
.Feature.Value.Type.GetVectorSize())
730
vm.InputType.GetVectorSize(), data.
Schema
.Feature.Value.Type.GetVectorSize());
734
var bound = bindable.Bind(env, data.
Schema
);
735
return new GenericScorer(env, scorerArgs, data.Data, bound, data.
Schema
);
Microsoft.ML.KMeansClustering (1)
KMeansPlusPlusTrainer.cs (1)
230
if (data.
Schema
.Weight.HasValue)
Microsoft.ML.LightGbm (19)
LightGbmBinaryTrainer.cs (2)
270
var labelType = data.
Schema
.Label.Value.Type;
274
$"Label column '{data.
Schema
.Label.Value.Name}' is of type '{labelType.RawType}', but must be unsigned int, boolean or float.");
LightGbmMulticlassTrainer.cs (3)
240
var labelType = data.
Schema
.Label.Value.Type;
244
$"Label column '{data.
Schema
.Label.Value.Name}' is of type '{labelType.RawType}', but must be of unsigned int, boolean or float.");
293
if (data.
Schema
.Label.Value.Type is KeyDataViewType keyType)
LightGbmRankingTrainer.cs (4)
248
var labelCol = data.
Schema
.Label.Value;
256
if (!data.
Schema
.Group.HasValue)
257
throw ch.ExceptValue(nameof(data.
Schema
.Group), "Group column is missing.");
258
var groupCol = data.
Schema
.Group.Value;
LightGbmRegressionTrainer.cs (2)
232
var labelType = data.
Schema
.Label.Value.Type;
236
$"Label column '{data.
Schema
.Label.Value.Name}' is of type '{labelType.RawType}', but must be an unsigned int, boolean or float.");
LightGbmTrainerBase.cs (8)
526
ch.CheckParam(data.
Schema
.Label.HasValue, nameof(data), "Need a label column");
557
if (data.
Schema
.Weight.HasValue)
645
var featureCol = trainData.
Schema
.Feature.Value;
646
AnnotationUtils.TryGetCategoricalFeatureIndices(trainData.
Schema
.Schema, featureCol.Index, out categoricalFeatures);
648
var colType = trainData.
Schema
.Feature.Value.Type;
769
ch.Check(factory.Data.
Schema
.Label != null, "The data should have label.");
771
bool hasWeights = factory.Data.
Schema
.Weight != null;
775
ch.Check(factory.Data.
Schema
.Group != null, "The data for ranking task should have group field.");
Microsoft.ML.Mkl.Components (12)
OlsLinearRegression.cs (5)
157
ch.CheckParam(examples.
Schema
.Feature.HasValue, nameof(examples), "Need a feature column");
158
ch.CheckParam(examples.
Schema
.Label.HasValue, nameof(examples), "Need a labelColumn column");
161
var typeLab = examples.
Schema
.Label.Value.Type;
166
var typeFeat = examples.
Schema
.Feature.Value.Type as VectorDataViewType;
173
if (examples.
Schema
.Weight.HasValue)
SymSgdClassificationTrainer.cs (7)
205
var roles = examples.
Schema
.GetColumnRoleNames();
208
ch.Assert(examplesToFeedTrain.
Schema
.Label.HasValue);
209
ch.Assert(examplesToFeedTrain.
Schema
.Feature.HasValue);
210
if (examples.
Schema
.Weight.HasValue)
211
ch.Assert(examplesToFeedTrain.
Schema
.Weight.HasValue);
213
ch.Check(examplesToFeedTrain.
Schema
.Feature.Value.Type is VectorDataViewType vecType && vecType.Size > 0, "Training set has no features, aborting training.");
703
int numFeatures = data.
Schema
.Feature.Value.Type.GetVectorSize();
Microsoft.ML.PCA (1)
PcaTrainer.cs (1)
231
if (data.
Schema
.Weight.HasValue)
Microsoft.ML.Recommender (11)
MatrixFactorizationTrainer.cs (8)
441
ch.CheckParam(data.
Schema
.Label.HasValue, nameof(data), "Input data did not have a unique label");
443
var labelCol = data.
Schema
.Label.Value;
450
ch.CheckParam(validData.
Schema
.Label.HasValue, nameof(validData), "Input validation data did not have a unique label");
452
var validLabelCol = validData.
Schema
.Label.Value;
474
using (var cursor = data.Data.GetRowCursor(matrixColumnIndexColInfo, matrixRowIndexColInfo, data.
Schema
.Label.Value))
477
var labGetter = RowCursorUtils.GetGetterAs<float>(NumberDataViewType.Single, cursor, data.
Schema
.Label.Value.Index);
493
using (var validCursor = validData.Data.GetRowCursor(matrixColumnIndexColInfo, matrixRowIndexColInfo, data.
Schema
.Label.Value))
495
ValueGetter<float> validLabelGetter = RowCursorUtils.GetGetterAs<float>(NumberDataViewType.Single, validCursor, validData.
Schema
.Label.Value.Index);
RecommenderUtils.cs (3)
54
if (!data.
Schema
.HasUnique(role))
56
int kindCount = Utils.Size(data.
Schema
.GetColumns(role));
61
col = data.
Schema
.GetColumns(role)[0];
Microsoft.ML.StandardTrainers (59)
FactorizationMachine\FactorizationMachineTrainer.cs (15)
362
var featureColumns = data.
Schema
.GetColumns(RoleMappedSchema.ColumnRole.Feature);
373
columns.Add(data.
Schema
.Label.Value);
374
if (data.
Schema
.Weight != null)
375
columns.Add(data.
Schema
.Weight.Value);
379
var labelGetter = RowCursorUtils.GetLabelGetter(cursor, data.
Schema
.Label.Value.Index);
380
var weightGetter = data.
Schema
.Weight.HasValue ? cursor.GetGetter<float>(data.
Schema
.Weight.Value) : null;
415
var featureColumns = data.
Schema
.GetColumns(RoleMappedSchema.ColumnRole.Feature);
440
var validFeatureColumns = data.
Schema
.GetColumns(RoleMappedSchema.ColumnRole.Feature);
478
var columns = data.
Schema
.Schema.Where(x => fieldColumnIndexes.Contains(x.Index)).ToList();
479
columns.Add(data.
Schema
.Label.Value);
480
if (data.
Schema
.Weight != null)
481
columns.Add(data.
Schema
.Weight.Value);
491
var labelGetter = RowCursorUtils.GetLabelGetter(cursor, data.
Schema
.Label.Value.Index);
492
var weightGetter = data.
Schema
.Weight?.Index is int weightIdx ? RowCursorUtils.GetGetterAs<float>(NumberDataViewType.Single, cursor, weightIdx) : null;
LdSvm\LdSvmTrainer.cs (4)
591
using (var cursor = _data.Data.GetRowCursor(_data.Data.Schema[_data.
Schema
.Feature.Value.Name]))
593
var getter = cursor.GetGetter<VBuffer<float>>(_data.Data.Schema[_data.
Schema
.Feature.Value.Name]);
632
var featureCol = _data.Data.Schema[_data.
Schema
.Feature.Value.Name];
633
var labelCol = _data.Data.Schema[_data.
Schema
.Label.Value.Name];
Standard\LogisticRegression\LbfgsPredictorBase.cs (4)
481
if (data.
Schema
.Weight.HasValue)
487
var typeFeat = data.
Schema
.Feature.Value.Type as VectorDataViewType;
587
if (data.
Schema
.Weight != null)
592
if (data.
Schema
.Weight.HasValue)
Standard\LogisticRegression\LogisticRegression.cs (1)
268
var featureCol = cursorFactory.Data.
Schema
.Feature.Value;
Standard\LogisticRegression\MulticlassLogisticRegression.cs (1)
181
var labelCol = data.
Schema
.Label.Value;
Standard\MulticlassClassification\MetaMulticlassTrainer.cs (2)
97
Host.Assert(data.
Schema
.Label.HasValue);
99
var label = data.
Schema
.Label.Value;
Standard\MulticlassClassification\MulticlassNaiveBayesTrainer.cs (3)
136
Host.Check(data.
Schema
.Label.HasValue, "Missing Label column");
137
var labelCol = data.
Schema
.Label.Value;
141
Host.Check(data.
Schema
.Feature.HasValue, "Missing Feature column");
Standard\MulticlassClassification\OneVersusAllTrainer.cs (2)
167
string trainerLabel = data.
Schema
.Label.Value.Name;
193
var label = data.
Schema
.Label.Value;
Standard\MulticlassClassification\PairwiseCouplingTrainer.cs (2)
149
string trainerLabel = data.
Schema
.Label.Value.Name;
166
var label = data.
Schema
.Label.Value;
Standard\Online\OnlineLinear.cs (1)
324
if (data.
Schema
.Weight.HasValue)
Standard\SdcaBinary.cs (11)
116
var roles = examples.
Schema
.GetColumnRoleNames();
119
ch.Assert(examplesToFeedTrain.
Schema
.Label.HasValue);
120
ch.Assert(examplesToFeedTrain.
Schema
.Feature.HasValue);
121
if (examples.
Schema
.Weight.HasValue)
122
ch.Assert(examplesToFeedTrain.
Schema
.Weight.HasValue);
124
ch.Check(examplesToFeedTrain.
Schema
.Feature.Value.Type is VectorDataViewType vecType && vecType.Size > 0, "Training set has no features, aborting training.");
327
int numFeatures = data.
Schema
.Feature.Value.Type.GetVectorSize();
331
if (data.
Schema
.Weight.HasValue)
2024
Contracts.Assert(data.
Schema
.Feature.HasValue);
2026
int numFeatures = data.
Schema
.Feature.Value.Type.GetVectorSize();
2029
if (data.
Schema
.Weight.HasValue)
Standard\Simple\SimpleTrainers.cs (7)
255
_host.CheckParam(data.
Schema
.Label.HasValue, nameof(data), "Missing Label column");
256
var labelCol = data.
Schema
.Label.Value;
263
if (data.
Schema
.Weight?.Type == NumberDataViewType.Single)
264
colWeight = data.
Schema
.Weight.Value.Index;
266
var cols = colWeight > -1 ? new DataViewSchema.Column[] { labelCol, data.
Schema
.Weight.Value } : new DataViewSchema.Column[] { labelCol };
270
var getLab = cursor.GetGetter<bool>(data.
Schema
.Label.Value);
271
var getWeight = colWeight >= 0 ? cursor.GetGetter<float>(data.
Schema
.Weight.Value) : null;
Standard\StochasticTrainerBase.cs (6)
80
var roles = examples.
Schema
.GetColumnRoleNames();
83
ch.Assert(examplesToFeedTrain.
Schema
.Label.HasValue);
84
ch.Assert(examplesToFeedTrain.
Schema
.Feature.HasValue);
85
if (examples.
Schema
.Weight.HasValue)
86
ch.Assert(examplesToFeedTrain.
Schema
.Weight.HasValue);
88
ch.Check(examplesToFeedTrain.
Schema
.Feature.Value.Type is VectorDataViewType vecType && vecType.Size > 0, "Training set has no features, aborting training.");
Microsoft.ML.TimeSeries (6)
AdaptiveSingularSpectrumSequenceModeler.cs (6)
1210
_host.CheckParam(data.
Schema
.Feature.HasValue, nameof(data), "Must have features column.");
1211
var featureCol = data.
Schema
.Feature.Value;
1557
if (data.
Schema
.Feature.Value.Type != NumberDataViewType.Single)
1558
throw _host.ExceptUserArg(nameof(data.
Schema
.Feature.Value.Name), "The time series input column has " +
1559
"type '{0}', but must be a float.", data.
Schema
.Feature.Value.Type);
1561
var col = data.
Schema
.Feature.Value;
Microsoft.ML.Transforms (2)
Dracula\CountTableTransformer.cs (2)
298
_host.Assert(data.
Schema
.Label.HasValue);
300
if (data.
Schema
.Label.Value.Type == BooleanDataViewType.Instance)