File: SweepableEstimator\Estimators\Images.cs
Web Access
Project: src\src\Microsoft.ML.AutoML\Microsoft.ML.AutoML.csproj (Microsoft.ML.AutoML)
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using Microsoft.ML.Vision;
 
namespace Microsoft.ML.AutoML.CodeGen
{
    internal partial class LoadImages
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, LoadImageOption param)
        {
            return context.Transforms.LoadImages(param.OutputColumnName, param.ImageFolder, param.InputColumnName);
        }
    }
 
    internal partial class LoadRawImageBytes
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, LoadImageOption param)
        {
            return context.Transforms.LoadRawImageBytes(param.OutputColumnName, param.ImageFolder, param.InputColumnName);
        }
    }
 
    internal partial class ResizeImages
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, ResizeImageOption param)
        {
            return context.Transforms.ResizeImages(param.OutputColumnName, param.ImageWidth, param.ImageHeight, param.InputColumnName, param.Resizing, param.CropAnchor);
        }
    }
 
    internal partial class ExtractPixels
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, ExtractPixelsOption param)
        {
            return context.Transforms.ExtractPixels(param.OutputColumnName, param.InputColumnName, param.ColorsToExtract, param.OrderOfExtraction, outputAsFloatArray: param.OutputAsFloatArray);
        }
    }
 
    internal partial class ImageClassificationMulti
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, ImageClassificationOption param)
        {
            var option = new ImageClassificationTrainer.Options
            {
                Arch = param.Arch,
                BatchSize = param.BatchSize,
                LabelColumnName = param.LabelColumnName,
                FeatureColumnName = param.FeatureColumnName,
                ScoreColumnName = param.ScoreColumnName,
            };
 
            return context.MulticlassClassification.Trainers.ImageClassification(option);
        }
    }
 
    internal partial class DnnFeaturizerImage
    {
        public override IEstimator<ITransformer> BuildFromOption(MLContext context, DnnFeaturizerImageOption param)
        {
            switch (param.ModelFactory)
            {
                case "resnet_50":
                    return context.Transforms.DnnFeaturizeImage(param.OutputColumnName,
                        m => m.ModelSelector.ResNet50(context, param.OutputColumnName, param.InputColumnName), param.InputColumnName);
                case "resnet_18":
                    return context.Transforms.DnnFeaturizeImage(param.OutputColumnName,
                        m => m.ModelSelector.ResNet18(context, param.OutputColumnName, param.InputColumnName), param.InputColumnName);
                case "resnet_101":
                    return context.Transforms.DnnFeaturizeImage(param.OutputColumnName,
                        m => m.ModelSelector.ResNet101(context, param.OutputColumnName, param.InputColumnName), param.InputColumnName);
                case "alexnet":
                    return context.Transforms.DnnFeaturizeImage(param.OutputColumnName,
                        m => m.ModelSelector.AlexNet(context, param.OutputColumnName, param.InputColumnName), param.InputColumnName);
                default:
                    throw new NotImplementedException();
            }
        }
    }
}