|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
// NOTE: This code is derived from an implementation originally in dotnet/runtime:
// https://github.com/dotnet/runtime/blob/v8.0.3/src/libraries/System.Private.CoreLib/src/System/Collections/HashHelpers.cs
//
// See the commentary in https://github.com/dotnet/roslyn/pull/50156 for notes on incorporating changes made to the
// reference implementation.
using System;
using System.Collections.Immutable;
using System.Diagnostics;
using System.Runtime.CompilerServices;
namespace Microsoft.CodeAnalysis.Collections.Internal
{
internal static class HashHelpers
{
// This is the maximum prime smaller than Array.MaxLength.
public const int MaxPrimeArrayLength = 0x7FFFFFC3;
public const int HashPrime = 101;
// Table of prime numbers to use as hash table sizes.
// A typical resize algorithm would pick the smallest prime number in this array
// that is larger than twice the previous capacity.
// Suppose our Hashtable currently has capacity x and enough elements are added
// such that a resize needs to occur. Resizing first computes 2x then finds the
// first prime in the table greater than 2x, i.e. if primes are ordered
// p_1, p_2, ..., p_i, ..., it finds p_n such that p_n-1 < 2x < p_n.
// Doubling is important for preserving the asymptotic complexity of the
// hashtable operations such as add. Having a prime guarantees that double
// hashing does not lead to infinite loops. IE, your hash function will be
// h1(key) + i*h2(key), 0 <= i < size. h2 and the size must be relatively prime.
// We prefer the low computation costs of higher prime numbers over the increased
// memory allocation of a fixed prime number i.e. when right sizing a HashSet.
private static readonly ImmutableArray<int> s_primes = ImmutableArray.Create(
3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369);
public static bool IsPrime(int candidate)
{
if ((candidate & 1) != 0)
{
var limit = (int)Math.Sqrt(candidate);
for (var divisor = 3; divisor <= limit; divisor += 2)
{
if ((candidate % divisor) == 0)
return false;
}
return true;
}
return candidate == 2;
}
public static int GetPrime(int min)
{
if (min < 0)
throw new ArgumentException(SR.Arg_HTCapacityOverflow);
foreach (var prime in s_primes)
{
if (prime >= min)
return prime;
}
// Outside of our predefined table. Compute the hard way.
for (var i = (min | 1); i < int.MaxValue; i += 2)
{
if (IsPrime(i) && ((i - 1) % HashPrime != 0))
return i;
}
return min;
}
// Returns size of hashtable to grow to.
public static int ExpandPrime(int oldSize)
{
var newSize = 2 * oldSize;
// Allow the hashtables to grow to maximum possible size (~2G elements) before encountering capacity overflow.
// Note that this check works even when _items.Length overflowed thanks to the (uint) cast
if ((uint)newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize)
{
Debug.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
return MaxPrimeArrayLength;
}
return GetPrime(newSize);
}
/// <summary>Returns approximate reciprocal of the divisor: ceil(2**64 / divisor).</summary>
/// <remarks>This should only be used on 64-bit.</remarks>
public static ulong GetFastModMultiplier(uint divisor)
=> ulong.MaxValue / divisor + 1;
/// <summary>Performs a mod operation using the multiplier pre-computed with <see cref="GetFastModMultiplier"/>.</summary>
/// <remarks>
/// PERF: This improves performance in 64-bit scenarios at the expense of performance in 32-bit scenarios. Since
/// we only build a single AnyCPU binary, we opt for improved performance in the 64-bit scenario.
/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint FastMod(uint value, uint divisor, ulong multiplier)
{
// We use modified Daniel Lemire's fastmod algorithm (https://github.com/dotnet/runtime/pull/406),
// which allows to avoid the long multiplication if the divisor is less than 2**31.
Debug.Assert(divisor <= int.MaxValue);
// This is equivalent of (uint)Math.BigMul(multiplier * value, divisor, out _). This version
// is faster than BigMul currently because we only need the high bits.
var highbits = (uint)(((((multiplier * value) >> 32) + 1) * divisor) >> 32);
Debug.Assert(highbits == value % divisor);
return highbits;
}
}
}
|