|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.CodeAnalysis.FindSymbols;
using Microsoft.CodeAnalysis.PooledObjects;
using Microsoft.CodeAnalysis.Shared.Extensions;
using Microsoft.CodeAnalysis.Shared.Utilities;
using Roslyn.Utilities;
namespace Microsoft.CodeAnalysis.Completion.Providers;
internal static partial class ExtensionMethodImportCompletionHelper
{
private sealed class SymbolComputer
{
private readonly int _position;
private readonly Document _originatingDocument;
/// <summary>
/// The semantic model provided for <see cref="_originatingDocument"/>. This may be a speculative semantic
/// model with limited validity based on the context surrounding <see cref="_position"/>.
/// </summary>
private readonly SemanticModel _originatingSemanticModel;
private readonly ITypeSymbol _receiverTypeSymbol;
private readonly ImmutableArray<string> _receiverTypeNames;
private readonly ISet<string> _namespaceInScope;
private readonly IImportCompletionCacheService<ExtensionMethodImportCompletionCacheEntry, object> _cacheService;
// This dictionary is used as cache among all projects and PE references.
// The key is the receiver type as in the extension method declaration (symbol retrived from originating compilation).
// The value indicates if we can reduce an extension method with this receiver type given receiver type.
private readonly ConcurrentDictionary<ITypeSymbol, bool> _checkedReceiverTypes = [];
public SymbolComputer(
Document document,
SemanticModel semanticModel,
ITypeSymbol receiverTypeSymbol,
int position,
ISet<string> namespaceInScope)
{
_originatingDocument = document;
_originatingSemanticModel = semanticModel;
_receiverTypeSymbol = receiverTypeSymbol;
_position = position;
_namespaceInScope = namespaceInScope;
var receiverTypeNames = GetReceiverTypeNames(receiverTypeSymbol);
_receiverTypeNames = AddComplexTypes(receiverTypeNames);
_cacheService = GetCacheService(document.Project);
}
private static IImportCompletionCacheService<ExtensionMethodImportCompletionCacheEntry, object> GetCacheService(Project project)
=> project.Solution.Services.GetRequiredService<IImportCompletionCacheService<ExtensionMethodImportCompletionCacheEntry, object>>();
private static string? GetPEReferenceCacheKey(PortableExecutableReference peReference)
=> peReference.FilePath ?? peReference.Display;
/// <summary>
/// Force create/update all relevant indices
/// </summary>
public static void QueueCacheWarmUpTask(Project project)
{
GetCacheService(project).WorkQueue.AddWork(project);
}
public static async ValueTask UpdateCacheAsync(Project project, CancellationToken cancellationToken)
{
cancellationToken.ThrowIfCancellationRequested();
var cacheService = GetCacheService(project);
foreach (var relevantProject in GetAllRelevantProjects(project))
await GetUpToDateCacheEntryAsync(relevantProject, cacheService, cancellationToken).ConfigureAwait(false);
foreach (var peReference in GetAllRelevantPeReferences(project))
await SymbolTreeInfo.GetInfoForMetadataReferenceAsync(project.Solution, peReference, checksum: null, cancellationToken).ConfigureAwait(false);
}
public async Task<(ImmutableArray<IMethodSymbol> symbols, bool isPartialResult)> GetExtensionMethodSymbolsAsync(bool forceCacheCreation, bool hideAdvancedMembers, CancellationToken cancellationToken)
{
try
{
// Find applicable symbols in parallel
var peReferenceMethodSymbolsTask = ProducerConsumer<IMethodSymbol?>.RunParallelAsync(
source: GetAllRelevantPeReferences(_originatingDocument.Project),
produceItems: static (peReference, callback, args, cancellationToken) =>
args.@this.GetExtensionMethodSymbolsFromPeReferenceAsync(peReference, callback, args.forceCacheCreation, cancellationToken),
args: (@this: this, forceCacheCreation),
cancellationToken);
var projectMethodSymbolsTask = ProducerConsumer<IMethodSymbol?>.RunParallelAsync(
source: GetAllRelevantProjects(_originatingDocument.Project),
produceItems: static (project, callback, args, cancellationToken) =>
args.@this.GetExtensionMethodSymbolsFromProjectAsync(project, callback, args.forceCacheCreation, cancellationToken),
args: (@this: this, forceCacheCreation),
cancellationToken);
var results = await Task.WhenAll(peReferenceMethodSymbolsTask, projectMethodSymbolsTask).ConfigureAwait(false);
var isPartialResult = false;
using var _ = ArrayBuilder<IMethodSymbol>.GetInstance(results[0].Length + results[1].Length, out var symbols);
foreach (var methodArray in results)
{
foreach (var method in methodArray)
{
// `null` indicates we don't have the index ready for the corresponding project/PE.
// returns what we have even it means we only show partial results.
if (method is null)
{
isPartialResult = true;
}
else
{
symbols.Add(method);
}
}
}
var browsableSymbols = symbols
.ToImmutable()
.FilterToVisibleAndBrowsableSymbols(hideAdvancedMembers, _originatingSemanticModel.Compilation);
return (browsableSymbols, isPartialResult);
}
finally
{
// If we are not force creating/updating the cache, an update task needs to be queued in background.
if (!forceCacheCreation)
GetCacheService(_originatingDocument.Project).WorkQueue.AddWork(_originatingDocument.Project);
}
}
// Returns all referenced projects and originating project itself.
private static ImmutableArray<Project> GetAllRelevantProjects(Project project)
{
var graph = project.Solution.GetProjectDependencyGraph();
var relevantProjectIds = graph.GetProjectsThatThisProjectTransitivelyDependsOn(project.Id).Concat(project.Id);
return [.. relevantProjectIds.Select(project.Solution.GetRequiredProject).Where(p => p.SupportsCompilation)];
}
// Returns all PEs referenced by originating project.
private static ImmutableArray<PortableExecutableReference> GetAllRelevantPeReferences(Project project)
=> [.. project.MetadataReferences.OfType<PortableExecutableReference>()];
private async Task GetExtensionMethodSymbolsFromProjectAsync(
Project project,
Action<IMethodSymbol?> callback,
bool forceCacheCreation,
CancellationToken cancellationToken)
{
ExtensionMethodImportCompletionCacheEntry cacheEntry;
if (forceCacheCreation)
{
cacheEntry = await GetUpToDateCacheEntryAsync(project, _cacheService, cancellationToken).ConfigureAwait(false);
}
else if (!_cacheService.ProjectItemsCache.TryGetValue(project.Id, out cacheEntry))
{
// Use cached data if available, even checksum doesn't match. otherwise, returns null indicating cache not ready.
callback(null);
return;
}
if (!cacheEntry.ContainsExtensionMethod)
return;
var originatingAssembly = _originatingSemanticModel.Compilation.Assembly;
var filter = CreateAggregatedFilter(cacheEntry);
// Avoid recalculating a compilation for the originating document, particularly for the case where the
// provided semantic model is a speculative semantic model.
var compilation = project == _originatingDocument.Project
? _originatingSemanticModel.Compilation
: await project.GetRequiredCompilationAsync(cancellationToken).ConfigureAwait(false);
var assembly = compilation.Assembly;
var internalsVisible = originatingAssembly.IsSameAssemblyOrHasFriendAccessTo(assembly);
var matchingMethodSymbols = GetPotentialMatchingSymbolsFromAssembly(
compilation.Assembly, filter, internalsVisible, cancellationToken);
if (project == _originatingDocument.Project)
{
GetExtensionMethodsForSymbolsFromSameCompilation(matchingMethodSymbols, callback, cancellationToken);
}
else
{
GetExtensionMethodsForSymbolsFromDifferentCompilation(matchingMethodSymbols, callback, cancellationToken);
}
}
private async Task GetExtensionMethodSymbolsFromPeReferenceAsync(
PortableExecutableReference peReference,
Action<IMethodSymbol?> callback,
bool forceCacheCreation,
CancellationToken cancellationToken)
{
SymbolTreeInfo? symbolInfo;
if (forceCacheCreation)
{
symbolInfo = await SymbolTreeInfo.GetInfoForMetadataReferenceAsync(
_originatingDocument.Project.Solution, peReference, checksum: null, cancellationToken).ConfigureAwait(false);
}
else
{
var cachedInfoTask = SymbolTreeInfo.TryGetCachedInfoForMetadataReferenceIgnoreChecksumAsync(peReference, cancellationToken);
if (cachedInfoTask.IsCompleted)
{
// Use cached data if available, even checksum doesn't match. We will update the cache in the background.
symbolInfo = await cachedInfoTask.ConfigureAwait(false);
}
else
{
// No cached data immediately available, returns null to indicate index not ready
callback(null);
return;
}
}
if (symbolInfo is null ||
!symbolInfo.ContainsExtensionMethod ||
_originatingSemanticModel.Compilation.GetAssemblyOrModuleSymbol(peReference) is not IAssemblySymbol assembly)
{
return;
}
var filter = CreateAggregatedFilter(symbolInfo);
var internalsVisible = _originatingSemanticModel.Compilation.Assembly.IsSameAssemblyOrHasFriendAccessTo(assembly);
var matchingMethodSymbols = GetPotentialMatchingSymbolsFromAssembly(assembly, filter, internalsVisible, cancellationToken);
GetExtensionMethodsForSymbolsFromSameCompilation(matchingMethodSymbols, callback, cancellationToken);
}
private void GetExtensionMethodsForSymbolsFromDifferentCompilation(
MultiDictionary<ITypeSymbol, IMethodSymbol> matchingMethodSymbols,
Action<IMethodSymbol?> callback,
CancellationToken cancellationToken)
{
// Matching extension method symbols are grouped based on their receiver type.
foreach (var (declaredReceiverType, methodSymbols) in matchingMethodSymbols)
{
cancellationToken.ThrowIfCancellationRequested();
var declaredReceiverTypeInOriginatingCompilation = SymbolFinder.FindSimilarSymbols(declaredReceiverType, _originatingSemanticModel.Compilation, cancellationToken).FirstOrDefault();
if (declaredReceiverTypeInOriginatingCompilation == null)
{
// Bug: https://github.com/dotnet/roslyn/issues/45404
// SymbolFinder.FindSimilarSymbols would fail if originating and referenced compilation targeting different frameworks say net472 and netstandard respectively.
// Here's SymbolKey for System.String from those two framework as an example:
//
// {1 (D "String" (N "System" 0 (N "" 0 (U (S "netstandard" 4) 3) 2) 1) 0 0 (% 0) 0)}
// {1 (D "String" (N "System" 0 (N "" 0 (U (S "mscorlib" 4) 3) 2) 1) 0 0 (% 0) 0)}
//
// Also we don't use the "ignoreAssemblyKey" option for SymbolKey resolution because its perfermance doesn't meet our requirement.
continue;
}
if (_checkedReceiverTypes.TryGetValue(declaredReceiverTypeInOriginatingCompilation, out var cachedResult) && !cachedResult)
{
// If we already checked an extension method with same receiver type before, and we know it can't be applied
// to the receiverTypeSymbol, then no need to proceed methods from this group..
continue;
}
// This is also affected by the symbol resolving issue mentioned above, which means in case referenced projects
// are targeting different framework, we will miss extension methods with any framework type in their signature from those projects.
var isFirstMethod = true;
foreach (var methodInOriginatingCompilation in methodSymbols.Select(s => SymbolFinder.FindSimilarSymbols(s, _originatingSemanticModel.Compilation).FirstOrDefault()).WhereNotNull())
{
if (isFirstMethod)
{
isFirstMethod = false;
// We haven't seen this receiver type yet. Try to check by reducing one extension method
// to the given receiver type and save the result.
if (!cachedResult)
{
// If this is the first symbol we retrived from originating compilation,
// try to check if we can apply it to given receiver type, and save result to our cache.
// Since method symbols are grouped by their declared receiver type, they are either all matches to the receiver type
// or all mismatches. So we only need to call ReduceExtensionMethod on one of them.
var reducedMethodSymbol = methodInOriginatingCompilation.ReduceExtensionMethod(_receiverTypeSymbol);
cachedResult = reducedMethodSymbol != null;
_checkedReceiverTypes[declaredReceiverTypeInOriginatingCompilation] = cachedResult;
// Now, cachedResult being false means method doesn't match the receiver type,
// stop processing methods from this group.
if (!cachedResult)
{
break;
}
}
}
if (_originatingSemanticModel.IsAccessible(_position, methodInOriginatingCompilation))
callback(methodInOriginatingCompilation);
}
}
}
private void GetExtensionMethodsForSymbolsFromSameCompilation(
MultiDictionary<ITypeSymbol, IMethodSymbol> matchingMethodSymbols,
Action<IMethodSymbol?> callback,
CancellationToken cancellationToken)
{
// Matching extension method symbols are grouped based on their receiver type.
foreach (var (receiverType, methodSymbols) in matchingMethodSymbols)
{
cancellationToken.ThrowIfCancellationRequested();
// If we already checked an extension method with same receiver type before, and we know it can't be applied
// to the receiverTypeSymbol, then no need to proceed further.
if (_checkedReceiverTypes.TryGetValue(receiverType, out var cachedResult) && !cachedResult)
continue;
// We haven't seen this type yet. Try to check by reducing one extension method
// to the given receiver type and save the result.
if (!cachedResult)
{
var reducedMethodSymbol = methodSymbols.First().ReduceExtensionMethod(_receiverTypeSymbol);
cachedResult = reducedMethodSymbol != null;
_checkedReceiverTypes[receiverType] = cachedResult;
}
// Receiver type matches the receiver type of the extension method declaration.
// We can add accessible ones to the item builder.
if (cachedResult)
{
foreach (var methodSymbol in methodSymbols)
{
if (_originatingSemanticModel.IsAccessible(_position, methodSymbol))
callback(methodSymbol);
}
}
}
}
private MultiDictionary<ITypeSymbol, IMethodSymbol> GetPotentialMatchingSymbolsFromAssembly(
IAssemblySymbol assembly,
MultiDictionary<string, (string methodName, string receiverTypeName)> extensionMethodFilter,
bool internalsVisible,
CancellationToken cancellationToken)
{
var builder = new MultiDictionary<ITypeSymbol, IMethodSymbol>();
// The filter contains all the extension methods that potentially match the receiver type.
// We use it as a guide to selectively retrive container and member symbols from the assembly.
foreach (var (fullyQualifiedContainerName, methodInfo) in extensionMethodFilter)
{
// First try to filter out types from already imported namespaces
var indexOfLastDot = fullyQualifiedContainerName.LastIndexOf('.');
var qualifiedNamespaceName = indexOfLastDot > 0 ? fullyQualifiedContainerName[..indexOfLastDot] : string.Empty;
if (_namespaceInScope.Contains(qualifiedNamespaceName))
{
continue;
}
// Container of extension method (static class in C# and Module in VB) can't be generic or nested.
var containerSymbol = assembly.GetTypeByMetadataName(fullyQualifiedContainerName);
if (containerSymbol == null
|| !containerSymbol.MightContainExtensionMethods
|| !IsAccessible(containerSymbol, internalsVisible))
{
continue;
}
// Now we have the container symbol, first try to get member extension method symbols that matches our syntactic filter,
// then further check if those symbols matches semantically.
foreach (var (methodName, receiverTypeName) in methodInfo)
{
cancellationToken.ThrowIfCancellationRequested();
var methodSymbols = containerSymbol.GetMembers(methodName).OfType<IMethodSymbol>();
foreach (var methodSymbol in methodSymbols)
{
if (MatchExtensionMethod(methodSymbol, receiverTypeName, internalsVisible, out var receiverType))
{
// Find a potential match.
builder.Add(receiverType!, methodSymbol);
}
}
}
}
return builder;
static bool MatchExtensionMethod(IMethodSymbol method, string filterReceiverTypeName, bool internalsVisible, out ITypeSymbol? receiverType)
{
receiverType = null;
if (!method.IsExtensionMethod || method.Parameters.IsEmpty || !IsAccessible(method, internalsVisible))
{
return false;
}
// We get a match if the receiver type name match.
// For complex type, we would check if it matches with filter on whether it's an array.
if (filterReceiverTypeName.Length > 0 && !string.Equals(filterReceiverTypeName, GetReceiverTypeName(method.Parameters[0].Type), StringComparison.Ordinal))
{
return false;
}
receiverType = method.Parameters[0].Type;
return true;
}
// An quick accessibility check based on declared accessibility only, a semantic based check is still required later.
// Since we are dealing with extension methods and their container (top level static class and modules), only public,
// internal and private modifiers are in play here.
// Also, this check is called for a method symbol only when the container was checked and is accessible.
static bool IsAccessible(ISymbol symbol, bool internalsVisible)
=> symbol.DeclaredAccessibility == Accessibility.Public ||
(symbol.DeclaredAccessibility == Accessibility.Internal && internalsVisible);
}
/// <summary>
/// Create a filter for extension methods from source.
/// The filter is a map from fully qualified type name to info of extension methods it contains.
/// </summary>
private MultiDictionary<string, (string methodName, string receiverTypeName)> CreateAggregatedFilter(ExtensionMethodImportCompletionCacheEntry syntaxIndex)
{
var results = new MultiDictionary<string, (string, string)>();
foreach (var receiverTypeName in _receiverTypeNames)
{
var methodInfos = syntaxIndex.ReceiverTypeNameToExtensionMethodMap[receiverTypeName];
if (methodInfos.Count == 0)
{
continue;
}
foreach (var methodInfo in methodInfos)
{
results.Add(methodInfo.FullyQualifiedContainerName, (methodInfo.Name, receiverTypeName));
}
}
return results;
}
/// <summary>
/// Create filter for extension methods from metadata
/// The filter is a map from fully qualified type name to info of extension methods it contains.
/// </summary>
private MultiDictionary<string, (string methodName, string receiverTypeName)> CreateAggregatedFilter(SymbolTreeInfo symbolInfo)
{
var results = new MultiDictionary<string, (string, string)>();
foreach (var receiverTypeName in _receiverTypeNames)
{
var methodInfos = symbolInfo.GetExtensionMethodInfoForReceiverType(receiverTypeName);
if (methodInfos.Count == 0)
{
continue;
}
foreach (var methodInfo in methodInfos)
{
results.Add(methodInfo.FullyQualifiedContainerName, (methodInfo.Name, receiverTypeName));
}
}
return results;
}
/// <summary>
/// Get the metadata name of all the base types and interfaces this type derived from.
/// </summary>
private static ImmutableArray<string> GetReceiverTypeNames(ITypeSymbol receiverTypeSymbol)
{
using var _ = PooledHashSet<string>.GetInstance(out var allTypeNamesBuilder);
AddNamesForTypeWorker(receiverTypeSymbol, allTypeNamesBuilder);
return [.. allTypeNamesBuilder];
static void AddNamesForTypeWorker(ITypeSymbol receiverTypeSymbol, PooledHashSet<string> builder)
{
if (receiverTypeSymbol is ITypeParameterSymbol typeParameter)
{
foreach (var constraintType in typeParameter.ConstraintTypes)
{
AddNamesForTypeWorker(constraintType, builder);
}
}
else
{
builder.Add(GetReceiverTypeName(receiverTypeSymbol));
builder.AddRange(receiverTypeSymbol.GetBaseTypes().Select(t => t.MetadataName));
builder.AddRange(receiverTypeSymbol.GetAllInterfacesIncludingThis().Select(t => t.MetadataName));
// interface doesn't inherit from object, but is implicitly convertible to object type.
if (receiverTypeSymbol.IsInterfaceType())
{
builder.Add(nameof(Object));
}
}
}
}
/// <summary>
/// Add strings represent complex types (i.e. "" for non-array types and "[]" for array types) to the receiver type,
/// so we would include in the filter info about extension methods with complex receiver type.
/// </summary>
private static ImmutableArray<string> AddComplexTypes(ImmutableArray<string> receiverTypeNames)
{
return
[
.. receiverTypeNames,
FindSymbols.Extensions.ComplexReceiverTypeName,
FindSymbols.Extensions.ComplexArrayReceiverTypeName,
];
}
private static string GetReceiverTypeName(ITypeSymbol typeSymbol)
{
switch (typeSymbol)
{
case INamedTypeSymbol namedType:
return namedType.MetadataName;
case IArrayTypeSymbol arrayType:
var elementType = arrayType.ElementType;
while (elementType is IArrayTypeSymbol symbol)
{
elementType = symbol.ElementType;
}
var elementTypeName = GetReceiverTypeName(elementType);
// We do not differentiate array of different kinds sicne they are all represented in the indices as "NonArrayElementTypeName[]"
// e.g. int[], int[][], int[,], etc. are all represented as "int[]", whereas array of complex type such as T[] is "[]".
return elementTypeName + FindSymbols.Extensions.ArrayReceiverTypeNameSuffix;
default:
// Complex types are represented by "";
return FindSymbols.Extensions.ComplexReceiverTypeName;
}
}
}
}
|