|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.PooledObjects;
using EncodingExtensions = Microsoft.CodeAnalysis.EncodingExtensions;
namespace Roslyn.Utilities;
#if CODE_STYLE
using Resources = CodeStyleResources;
#else
using Resources = WorkspacesResources;
#endif
/// <summary>
/// An <see cref="ObjectWriter"/> that serializes objects to a byte stream.
/// </summary>
internal sealed partial class ObjectWriter : IDisposable
{
private static class BufferPool<T>
{
public const int BufferSize = 32768;
// Large arrays that will not go into the LOH (even with System.Char).
public static ObjectPool<T[]> Shared = new(() => new T[BufferSize], 512);
}
/// <summary>
/// byte marker mask for encoding compressed uint
/// </summary>
public const byte ByteMarkerMask = 3 << 6;
/// <summary>
/// byte marker bits for uint encoded in 1 byte.
/// </summary>
public const byte Byte1Marker = 0;
/// <summary>
/// byte marker bits for uint encoded in 2 bytes.
/// </summary>
public const byte Byte2Marker = 1 << 6;
/// <summary>
/// byte marker bits for uint encoded in 4 bytes.
/// </summary>
public const byte Byte4Marker = 2 << 6;
private readonly BinaryWriter _writer;
/// <summary>
/// Map of serialized string reference ids. The string-reference-map uses value-equality for greater cache hits
/// and reuse.
///
/// This is a mutable struct, and as such is not readonly.
///
/// When we write out strings we give each successive, unique, item a monotonically increasing integral ID
/// starting at 0. I.e. the first string gets ID-0, the next gets ID-1 and so on and so forth. We do *not*
/// include these IDs with the object when it is written out. We only include the ID if we hit the object
/// *again* while writing.
///
/// During reading, the reader knows to give each string it reads the same monotonically increasing integral
/// value. i.e. the first string it reads is put into an array at position 0, the next at position 1, and so
/// on. Then, when the reader reads in a string-reference it can just retrieved it directly from that array.
///
/// In other words, writing and reading take advantage of the fact that they know they will write and read
/// strings in the exact same order. So they only need the IDs for references and not the strings themselves
/// because the ID is inferred from the order the object is written or read in.
/// </summary>
private WriterReferenceMap _stringReferenceMap;
/// <summary>
/// Creates a new instance of a <see cref="ObjectWriter"/>.
/// </summary>
/// <param name="stream">The stream to write to.</param>
/// <param name="leaveOpen">True to leave the <paramref name="stream"/> open after the <see cref="ObjectWriter"/> is disposed.</param>
public ObjectWriter(Stream stream, bool leaveOpen = false)
: this(stream, leaveOpen, writeValidationBytes: true)
{
}
/// <inheritdoc cref="ObjectWriter(Stream, bool)"/>
/// <param name="writeValidationBytes">Whether or not the validation bytes (see <see cref="WriteValidationBytes"/>)
/// should be immediately written into the stream.</param>
public ObjectWriter(Stream stream, bool leaveOpen, bool writeValidationBytes)
{
// String serialization assumes both reader and writer to be of the same endianness.
// It can be adjusted for BigEndian if needed.
Debug.Assert(BitConverter.IsLittleEndian);
_writer = new BinaryWriter(stream, Encoding.UTF8, leaveOpen);
_stringReferenceMap = new WriterReferenceMap();
if (writeValidationBytes)
WriteValidationBytes();
}
/// <summary>
/// Writes out a special sequence of bytes indicating that the stream is a serialized object stream. Used by the
/// <see cref="ObjectReader"/> to be able to easily detect if it is being improperly used, or if the stream is
/// corrupt.
/// </summary>
public void WriteValidationBytes()
{
WriteByte(ObjectReader.VersionByte1);
WriteByte(ObjectReader.VersionByte2);
}
public void Dispose()
{
_writer.Dispose();
_stringReferenceMap.Dispose();
}
public void WriteBoolean(bool value) => _writer.Write(value);
public void WriteByte(byte value) => _writer.Write(value);
// written as ushort because BinaryWriter fails on chars that are unicode surrogates
public void WriteChar(char ch) => _writer.Write((ushort)ch);
public void WriteDecimal(decimal value) => _writer.Write(value);
public void WriteDouble(double value) => _writer.Write(value);
public void WriteSingle(float value) => _writer.Write(value);
public void WriteInt32(int value) => _writer.Write(value);
public void WriteInt64(long value) => _writer.Write(value);
public void WriteSByte(sbyte value) => _writer.Write(value);
public void WriteInt16(short value) => _writer.Write(value);
public void WriteUInt32(uint value) => _writer.Write(value);
public void WriteUInt64(ulong value) => _writer.Write(value);
public void WriteUInt16(ushort value) => _writer.Write(value);
public void WriteString(string? value) => WriteStringValue(value);
/// <summary>
/// Used so we can easily grab the low/high 64bits of a guid for serialization.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
internal struct GuidAccessor
{
[FieldOffset(0)]
public Guid Guid;
[FieldOffset(0)]
public long Low64;
[FieldOffset(8)]
public long High64;
}
public void WriteGuid(Guid guid)
{
var accessor = new GuidAccessor { Guid = guid };
WriteInt64(accessor.Low64);
WriteInt64(accessor.High64);
}
/// <summary>
/// Only supports values of primitive scaler types. This really should only be used to emit VB preprocessor
/// symbol values (which are scaler, but untyped as 'object'). Callers which know their value's type should
/// call into that directly.
/// </summary>
public void WriteScalarValue(object? value)
{
Debug.Assert(value == null || !value.GetType().GetTypeInfo().IsEnum, "Enum should not be written with WriteValue. Write them as ints instead.");
if (value == null)
{
WriteByte((byte)TypeCode.Null);
return;
}
var type = value.GetType();
var typeInfo = type.GetTypeInfo();
Debug.Assert(!typeInfo.IsEnum, "Enums should not be written with WriteObject. Write them out as integers instead.");
// Perf: Note that JIT optimizes each expression value.GetType() == typeof(T) to a single register comparison.
// Also the checks are sorted by commonality of the checked types.
// The list supported can be found in CConst.TryCreate.
// The primitive types are Boolean, Byte, SByte, Int16, UInt16, Int32, UInt32, Int64, UInt64, IntPtr,
// UIntPtr, Char, Double, and Single.
if (typeInfo.IsPrimitive)
{
// Note: int, double, bool, char, have been chosen to go first as they're they common values of literals
// in code, and so would be the likely hits if we do have a primitive type we're serializing out.
if (value.GetType() == typeof(int))
{
WriteEncodedInt32((int)value);
}
else if (value.GetType() == typeof(double))
{
WriteByte((byte)TypeCode.Float8);
WriteDouble((double)value);
}
else if (value.GetType() == typeof(bool))
{
WriteByte((byte)((bool)value ? TypeCode.Boolean_True : TypeCode.Boolean_False));
}
else if (value.GetType() == typeof(char))
{
WriteByte((byte)TypeCode.Char);
WriteChar((char)value);
}
else if (value.GetType() == typeof(byte))
{
WriteByte((byte)TypeCode.UInt8);
WriteByte((byte)value);
}
else if (value.GetType() == typeof(short))
{
WriteByte((byte)TypeCode.Int16);
WriteInt16((short)value);
}
else if (value.GetType() == typeof(long))
{
WriteByte((byte)TypeCode.Int64);
WriteInt64((long)value);
}
else if (value.GetType() == typeof(sbyte))
{
WriteByte((byte)TypeCode.Int8);
WriteSByte((sbyte)value);
}
else if (value.GetType() == typeof(float))
{
WriteByte((byte)TypeCode.Float4);
WriteSingle((float)value);
}
else if (value.GetType() == typeof(ushort))
{
WriteByte((byte)TypeCode.UInt16);
WriteUInt16((ushort)value);
}
else if (value.GetType() == typeof(uint))
{
WriteEncodedUInt32((uint)value);
}
else if (value.GetType() == typeof(ulong))
{
WriteByte((byte)TypeCode.UInt64);
WriteUInt64((ulong)value);
}
else
{
throw ExceptionUtilities.UnexpectedValue(value.GetType());
}
}
else if (value.GetType() == typeof(decimal))
{
WriteByte((byte)TypeCode.Decimal);
WriteDecimal((decimal)value);
}
else if (value.GetType() == typeof(DateTime))
{
WriteByte((byte)TypeCode.DateTime);
_writer.Write(((DateTime)value).ToBinary());
}
else if (value.GetType() == typeof(string))
{
WriteStringValue((string)value);
}
else
{
throw new InvalidOperationException($"Unsupported object type: {value.GetType()}");
}
}
public void WriteByteArray(byte[] array)
{
WriteArrayLength(array.Length);
_writer.Write(array);
}
public void WriteCharArray(char[] array, int index, int count)
{
WriteArrayLength(count);
#if !NETCOREAPP
// BinaryWriter in .NET Framework allocates via the following:
// byte[] bytes = _encoding.GetBytes(chars, 0, chars.Length);
//
// Instead, emulate the .net core code which has the GetBytes
// call fill up a pooled array instead
var maxByteCount = Encoding.UTF8.GetMaxByteCount(count);
if (maxByteCount <= BufferPool<byte>.BufferSize)
{
using var pooledObj = BufferPool<byte>.Shared.GetPooledObject();
var buffer = pooledObj.Object;
var actualByteCount = Encoding.UTF8.GetBytes(array, index, count, buffer, 0);
_writer.Write(buffer, 0, actualByteCount);
return;
}
#endif
_writer.Write(array, index, count);
}
/// <summary>
/// Write an array of bytes. The array data is provided as a <see
/// cref="ReadOnlySpan{T}">ReadOnlySpan</see><<see cref="byte"/>>, and deserialized to a byte array.
/// </summary>
/// <param name="span">The array data.</param>
public void WriteSpan(ReadOnlySpan<byte> span)
{
WriteArrayLength(span.Length);
#if NET
_writer.Write(span);
#else
// BinaryWriter in .NET Framework does not support ReadOnlySpan<byte>, so we use a temporary buffer to write
// arrays of data.
WriteSpanPieces(span, static (writer, buffer, length) => writer.Write(buffer, 0, length));
#endif
}
private void WriteArrayLength(int length)
{
switch (length)
{
case 0:
WriteByte((byte)TypeCode.Array_0);
break;
case 1:
WriteByte((byte)TypeCode.Array_1);
break;
case 2:
WriteByte((byte)TypeCode.Array_2);
break;
case 3:
WriteByte((byte)TypeCode.Array_3);
break;
default:
WriteByte((byte)TypeCode.Array);
WriteCompressedUInt((uint)length);
break;
}
}
private void WriteSpanPieces<T>(
ReadOnlySpan<T> span,
Action<BinaryWriter, T[], int> write)
{
var spanLength = span.Length;
using var pooledObj = BufferPool<T>.Shared.GetPooledObject();
var buffer = pooledObj.Object;
for (var offset = 0; offset < spanLength; offset += buffer.Length)
{
var segmentLength = Math.Min(buffer.Length, spanLength - offset);
span.Slice(offset, segmentLength).CopyTo(buffer.AsSpan());
write(_writer, buffer, segmentLength);
}
}
private void WriteEncodedInt32(int v)
{
if (v >= 0 && v <= 10)
{
WriteByte((byte)((int)TypeCode.Int32_0 + v));
}
else if (v >= 0 && v < byte.MaxValue)
{
WriteByte((byte)TypeCode.Int32_1Byte);
WriteByte((byte)v);
}
else if (v >= 0 && v < ushort.MaxValue)
{
WriteByte((byte)TypeCode.Int32_2Bytes);
WriteUInt16((ushort)v);
}
else
{
WriteByte((byte)TypeCode.Int32);
WriteInt32(v);
}
}
private void WriteEncodedUInt32(uint v)
{
if (v >= 0 && v <= 10)
{
WriteByte((byte)((int)TypeCode.UInt32_0 + v));
}
else if (v >= 0 && v < byte.MaxValue)
{
WriteByte((byte)TypeCode.UInt32_1Byte);
WriteByte((byte)v);
}
else if (v >= 0 && v < ushort.MaxValue)
{
WriteByte((byte)TypeCode.UInt32_2Bytes);
WriteUInt16((ushort)v);
}
else
{
WriteByte((byte)TypeCode.UInt32);
WriteUInt32(v);
}
}
internal void WriteCompressedUInt(uint value)
{
if (value <= (byte.MaxValue >> 2))
{
WriteByte((byte)value);
}
else if (value <= (ushort.MaxValue >> 2))
{
var byte0 = (byte)(((value >> 8) & 0xFFu) | Byte2Marker);
var byte1 = (byte)(value & 0xFFu);
// high-bytes to low-bytes
WriteByte(byte0);
WriteByte(byte1);
}
else if (value <= (uint.MaxValue >> 2))
{
var byte0 = (byte)(((value >> 24) & 0xFFu) | Byte4Marker);
var byte1 = (byte)((value >> 16) & 0xFFu);
var byte2 = (byte)((value >> 8) & 0xFFu);
var byte3 = (byte)(value & 0xFFu);
// high-bytes to low-bytes
WriteByte(byte0);
WriteByte(byte1);
WriteByte(byte2);
WriteByte(byte3);
}
else
{
throw new ArgumentException(Resources.Value_too_large_to_be_represented_as_a_30_bit_unsigned_integer);
}
}
private unsafe void WriteStringValue(string? value)
{
if (value == null)
{
WriteByte((byte)TypeCode.Null);
}
else
{
if (_stringReferenceMap.TryGetReferenceId(value, out var id))
{
Debug.Assert(id >= 0);
if (id <= byte.MaxValue)
{
WriteByte((byte)TypeCode.StringRef_1Byte);
WriteByte((byte)id);
}
else if (id <= ushort.MaxValue)
{
WriteByte((byte)TypeCode.StringRef_2Bytes);
WriteUInt16((ushort)id);
}
else
{
WriteByte((byte)TypeCode.StringRef_4Bytes);
WriteInt32(id);
}
}
else
{
_stringReferenceMap.Add(value);
if (value.IsValidUnicodeString())
{
// Usual case - the string can be encoded as UTF-8:
// We can use the UTF-8 encoding of the binary writer.
WriteByte((byte)TypeCode.StringUtf8);
_writer.Write(value);
}
else
{
WriteByte((byte)TypeCode.StringUtf16);
// This is rare, just allocate UTF16 bytes for simplicity.
var bytes = new byte[(uint)value.Length * sizeof(char)];
fixed (char* valuePtr = value)
{
Marshal.Copy((IntPtr)valuePtr, bytes, 0, bytes.Length);
}
WriteCompressedUInt((uint)value.Length);
_writer.Write(bytes);
}
}
}
}
public void WriteEncoding(Encoding? encoding)
{
if (encoding == null)
{
WriteByte((byte)TypeCode.Null);
}
else if (encoding.TryGetEncodingKind(out var kind))
{
WriteByte((byte)ToTypeCode(kind));
}
else if (encoding.CodePage > 0)
{
WriteByte((byte)TypeCode.EncodingCodePage);
WriteInt32(encoding.CodePage);
}
else
{
WriteByte((byte)TypeCode.EncodingName);
WriteString(encoding.WebName);
}
return;
static TypeCode ToTypeCode(TextEncodingKind kind)
{
Debug.Assert(kind is >= EncodingExtensions.FirstTextEncodingKind and <= EncodingExtensions.LastTextEncodingKind);
return TypeCode.FirstWellKnownTextEncoding + (byte)(kind - EncodingExtensions.FirstTextEncodingKind);
}
}
}
|